岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 155162.doi: 10.12108/yxyqc.20210515
易俊, 涂志雄, 彭建云, 孔嫦娥, 魏军会, 李建明
YI Jun, TU Zhixiong, PENG Jianyun, KONG Chang'e, WEI Junhui, LI Jianming
摘要: 针对塔里木油田英买力气藏产水严重的开发现状,创新性地提出了控水疏气一体化技术,并通过室内实验研制了适用于"三高"气藏控水疏气的APR堵剂体系,由1%丙烯酰胺/丙烯酰吗啉/乙烯吡咯烷酮三元共聚物(APR)+0.6%聚乙烯亚胺+0.6%改性氧化铝纳米颗粒+0.2%硫脲复配而成,考察了该冻胶体系的耐温耐盐性及长期稳定性,并通过物理模拟实验对堵剂的封堵能力进行了评价。结果表明:APR堵剂具有良好的耐温性和长期热稳定性,在107~150℃的地层水条件下(矿化度为23.33×104 mg/L),成胶时间在2~14 h内可调可控,冻胶强度保持在G级,180 d脱水率最大仅为7.1%,且具有良好的封堵性能。在控水疏气一体化方式上,先注入0.5 PV的成胶液,再注入6 PV的N2,待成胶液固化交联后,冻胶的堵水疏气能力最强,此时冻胶对水的封堵能力是对气的封堵能力的9倍。该控水疏气APR堵剂体系为高温高压高盐气藏的高效开发提供了技术支持,具有广阔的应用前景。
中图分类号:
[1] 王小东, 王记俊, 韩明彬.边底水气藏提高采收率技术对策研究.吐哈油气, 2012, 17(1):40-44. WANG X D, WANG J J, HANG M S. Discussion on enhanced oil recovery technology in edge and bottom water gas reservoir. Tuha Oil & Gas, 2012, 17(1):40-44. [2] 曲占庆, 雷锡岳, 叶卫保, 等.新北油田气井选择性堵水技术研究与应用.西安石油大学学报(自然科学版), 2017, 32(6):56-60. QU Z Q, LIE X Y, YE W B, et al. Research and application of selective water plugging technology for gas wells in Xinbei Oilfield. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(6):56-60. [3] 刘翔, 赵春, 赵志宏.疏松砂岩气井堵水工艺技术研究.2015年全国天然气学术年会论文集, 2015:82-87. LIU X, ZHAO C, ZHAO Z H. Study on water plugging technology of loose sandstone gas well. Proceedings of 2015 National Natural Gas Academic Annual Conference, 2015:82-87. [4] 王秋语.国外高含水砂岩油田提高水驱采收率技术进展.岩性油气藏, 2012, 24(3):123-128. WANG Q Y. Technical progress for improving waterflood recovery efficiency of foreign high water cut sandstone oilfield. Lithologic Reservoirs, 2012, 24(3):123-128. [5] 张保康, 徐国瑞, 铁磊磊, 等". 堵水+调剖" 工艺参数优化和油藏适应性评价:以渤海SZ36-1油田为例.岩性油气藏, 2017, 29(5):155-161. ZHANG B K, XU G R, TIE L L, et al. Optimization of technological parameters and evaluation of reservoir adaptation by water plugging and profile control:A case from Bohai SZ36-1 oilfield. Lithologic Reservoirs, 2017, 29(5):155-161. [6] 任晓娟, 李晓骁, 鲁永辉, 等.改进型HV高强度凝胶堵水体系的应用.岩性油气藏, 2018, 30(5):131-137. REN X J, Ll X X, LU Y H, et al. Application on HV high-strength gel water plugging system. Lithologic Reservoirs, 2018, 30(5):131-137. [7] 韩培慧, 闫坤, 曹瑞波, 等.聚驱后油层提高采收率驱油方法. 岩性油气藏, 2019, 31(2):143-150. HAN P H, YAN K, CAO R B, et al. Oil displacement methods for enhanced oil recovery after polymer flooding. Lithologic Reservoirs, 2019, 31(2):143-150. [8] 王平美, 罗健辉, 白风鸾, 等.国内外气井堵水技术研究进展. 钻采工艺, 2001, 24(4):28-30. WANG P M, LUO J H, BAI F L, et al. The status quo of water shutoff technology in gas well at home and abroad. Drilling & Production Technology, 2001, 24(4):28-30. [9] 郭平, 景莎莎, 彭彩珍.气藏提高采收率技术及其对策.天然气工业, 2014, 34(2):48-55. GUO P, JING S S, PENG C Z. Technology and countermeasures for gas recovery enhancement. Natural Gas Industry, 2014, 34(2):48-55. [10] 戴彩丽, 冯海顺, 简家斌, 等.耐高温冻胶泡沫选择性堵水剂:适用于东海气田高温气藏堵水稳产. 天然气工业, 2015, 35(3):60-67. DAI C L, FENG H S, JIAN J B, et al. A selective water-plugging system with heat-resistant gel foam:A case study from the East China Sea gas field. Natural Gas Industry, 2015, 35(3):60-67. [11] 许寒冰, 李宜坤, 魏发林, 等.天然气井化学堵水新方法探讨. 石油钻采工艺, 2013, 35(5):111-117. XU H B, LI Y K, WEI F L, et al. Novel technical method discussion on chemical water shut-off for gas wells. Oil Drilling & Production Technology, 2013, 35(5):111-117. [12] 陈哲.英买7区块凝析气藏储层精细描述及流体分布规律研究.北京:中国石油大学(北京), 2017. CHEN Z. The fine description and the study of fluid distribution of condensate gas reservoir in the Yingmai 7 area. Beijing:China University of Petroleum(Beijing), 2017. [13] 唐善法, 周理志, 张大椿, 等.英买7-19凝析气藏储层液相伤害评价.天然气工业, 2009, 29(1):82-85. TANG S F, ZHOU L Z, ZHANG D C, et al. Liquid damage evaluation of condensate gas reservoir Yingmai 7-19. Natural Gas Industry, 2009, 29(1):82-85. [14] 苗忠英, 张秋茶, 陈践发, 等.英买力地区天然气地球化学特征.天然气工业, 2008, 28(6):40-43. MIAO Z Y, ZHANG Q C, CHEN J F, et al. Geochemical behaviors of natural gas in Yingmaili area,the Tarim Basin. Natural Gas Industry, 2008, 28(6):40-43. [15] WASSMUTH F R, GREEN K, HODGINS L, et al. Water shutoff in gas wells:Proper gel placement is the key to success. SPE Production & Facilities, 2004, 19(4):217-227. [16] DOVAN H T, HUTCHINS R D. New polymer technology for water control in gas wells. SPE Production & Facilities, 1994, 9(4):280-286. [17] KARIMI S, ESMAEILZADEH F, MOWLA D. Identification and selection of a stable gel polymer to control or reduce water production in gas condensate fields. Journal of Natural Gas Science & Engineering, 2014, 21:940-950. [18] CHEN T, YONG Z, PENG K, et al. A relative permeability modifier for water control of gas wells in a low-permeability reservoir. SPE Reservoir Engineering, 1996, 11(3):168-173. [19] HUTCHINS R D, DOVAN H T, SANDIFORD B B. Field applications of high temperature organic gels for water control. SPE 35444, 1996. [20] CHENEVIÈRE P, FALXA P. ALFENORE J, et al. Chemical water shut off interventions in the Tunu gas field:Optimization of treatment fluids,well interventions and operational challenges. SPE 95010, 2005. [21] JIA H, PU W F, ZHAO J Z, et al. Experimental investigation of the novel phenol formaldehyde cross-linking HPAM gel system:Based on the secondary cross-linking method of organic crosslinkers and its gelation performance study after flowing through porous media. Energy Fuels, 2011, 25(2):727-736. [22] 付美龙, 陈刚, 唐善法, 等.油田化学原理.北京:石油工业出版社, 2015:198-201. FU M L, CHEN G, TANG S F, et al. Principles of oilfield chemistry. Beijing:Petroleum Industry Press, 2015:198-201. [23] 贾虎, 蒲万芬.有机凝胶控水及堵水技术研究.西南石油大学学报(自然科学版), 2013, 35(6):141-152. JIA H, PU W F.Research on water control and water shutoff technologies of organic-gel. Journal of Southwest Petroleum University(Science Technology Edition), 2013, 35(6):141-152. [24] 刘洋. 新型抗温抗盐选择性堵水剂研究. 成都:西南石油大学, 2017. LIU Y. Study on a new type of temperature and salt resistant selective plugging agent. Chengdu:Southwest Petroleum University, 2017. [25] YANG S H, TREIBER L E. Chemical stability of polyacrylamide under simulated field conditions. SPE 14232, 1985. |
[1] | 张继红,郭鑫. 聚合物与葡北油田储层孔隙结构适应性研究[J]. 岩性油气藏, 2016, 28(4): 101-105. |
|