岩性油气藏 ›› 2021, Vol. 33 ›› Issue (5): 155–162.doi: 10.12108/yxyqc.20210515

• 油气田开发 • 上一篇    下一篇

耐温抗盐APR堵剂在英买力气藏的应用

易俊, 涂志雄, 彭建云, 孔嫦娥, 魏军会, 李建明   

  1. 中国石油塔里木油田分公司 油气工程研究院, 新疆 库尔勒 841000
  • 收稿日期:2020-09-30 修回日期:2021-03-18 出版日期:2021-10-01 发布日期:2021-09-30
  • 第一作者:易俊(1984-)男,工程师,主要从事采气工艺技术方面的研究。地址:(841000)新疆库尔勒市78号信箱中国石油塔里木油田分公司。Email:yijun-tlm@petrochina.com.cn。
  • 基金资助:
    国家自然科学基金面上项目“热敏聚合物纳米流体高温触变机制研究”(编号:52074038)资助

Application of APR plugging agent with temperature and salt resistance in Yingmaili gas reservoir

YI Jun, TU Zhixiong, PENG Jianyun, KONG Chang'e, WEI Junhui, LI Jianming   

  1. Research Institute of Oil and Gas Engineering, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China
  • Received:2020-09-30 Revised:2021-03-18 Online:2021-10-01 Published:2021-09-30

摘要: 针对塔里木油田英买力气藏产水严重的开发现状,创新性地提出了控水疏气一体化技术,并通过室内实验研制了适用于"三高"气藏控水疏气的APR堵剂体系,由1%丙烯酰胺/丙烯酰吗啉/乙烯吡咯烷酮三元共聚物(APR)+0.6%聚乙烯亚胺+0.6%改性氧化铝纳米颗粒+0.2%硫脲复配而成,考察了该冻胶体系的耐温耐盐性及长期稳定性,并通过物理模拟实验对堵剂的封堵能力进行了评价。结果表明:APR堵剂具有良好的耐温性和长期热稳定性,在107~150℃的地层水条件下(矿化度为23.33×104 mg/L),成胶时间在2~14 h内可调可控,冻胶强度保持在G级,180 d脱水率最大仅为7.1%,且具有良好的封堵性能。在控水疏气一体化方式上,先注入0.5 PV的成胶液,再注入6 PV的N2,待成胶液固化交联后,冻胶的堵水疏气能力最强,此时冻胶对水的封堵能力是对气的封堵能力的9倍。该控水疏气APR堵剂体系为高温高压高盐气藏的高效开发提供了技术支持,具有广阔的应用前景。

关键词: 气藏控水, 冻胶, 耐温, 抗盐, 英买力气藏

Abstract: In view of the current situation of serious water production in Yingmaili gas reservoir of Tarim Oilfield, an integrated technology of water control and gas drainage was innovatively proposed. The APR plugging agent system suitable for gas reservoirs with high temperature, high pressure and high salinity was developed through laboratory experiments, which was composed of 1% acrylamide/acryloyl morpholine/vinylpyrrolidone terpolymer(APR) + 0.6% polyethyleneimine+ 0.6% modified alumina nanoparticles+ 0.2% thiourea. The temperature and salt resistance and long-term stability of the gel system were investigated, and the plugging ability of the plugging agent was evaluated through physical model experiments. The results show that APR plugging agent has good temperature resistance and long-term thermal stability. Under the condition of formation water(salinity is 23.33×104 mg/L) at 107-150℃, the gelation time can be adjusted and controlled within 2-14 h, gel strength is maintained at grade G, and the maximum dehydration rate is only 7.1% after 180 d, with good plugging performance. In the integrated way of water control and gas drainage, 0.5 PV gelling liquid was injected first, and then 6 PV of N2 was injected. After solidifying and crosslinking of the gelling liquid, the gel has the best ability of water plugging and gas drainage, and the plugging capacity of the gel to water is 9 times that to gas. This APR plugging agent system provides technical support for efficient development of gas reservoirs with high temperature, high pressure and high salinity, so it has broad application prospects.

Key words: water control of gas reservoir, gel, temperature resistance, salt resistance, Yingmaili gas reservoir

中图分类号: 

  • TE357
[1] 王小东, 王记俊, 韩明彬.边底水气藏提高采收率技术对策研究.吐哈油气, 2012, 17(1):40-44. WANG X D, WANG J J, HANG M S. Discussion on enhanced oil recovery technology in edge and bottom water gas reservoir. Tuha Oil & Gas, 2012, 17(1):40-44.
[2] 曲占庆, 雷锡岳, 叶卫保, 等.新北油田气井选择性堵水技术研究与应用.西安石油大学学报(自然科学版), 2017, 32(6):56-60. QU Z Q, LIE X Y, YE W B, et al. Research and application of selective water plugging technology for gas wells in Xinbei Oilfield. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(6):56-60.
[3] 刘翔, 赵春, 赵志宏.疏松砂岩气井堵水工艺技术研究.2015年全国天然气学术年会论文集, 2015:82-87. LIU X, ZHAO C, ZHAO Z H. Study on water plugging technology of loose sandstone gas well. Proceedings of 2015 National Natural Gas Academic Annual Conference, 2015:82-87.
[4] 王秋语.国外高含水砂岩油田提高水驱采收率技术进展.岩性油气藏, 2012, 24(3):123-128. WANG Q Y. Technical progress for improving waterflood recovery efficiency of foreign high water cut sandstone oilfield. Lithologic Reservoirs, 2012, 24(3):123-128.
[5] 张保康, 徐国瑞, 铁磊磊, 等". 堵水+调剖" 工艺参数优化和油藏适应性评价:以渤海SZ36-1油田为例.岩性油气藏, 2017, 29(5):155-161. ZHANG B K, XU G R, TIE L L, et al. Optimization of technological parameters and evaluation of reservoir adaptation by water plugging and profile control:A case from Bohai SZ36-1 oilfield. Lithologic Reservoirs, 2017, 29(5):155-161.
[6] 任晓娟, 李晓骁, 鲁永辉, 等.改进型HV高强度凝胶堵水体系的应用.岩性油气藏, 2018, 30(5):131-137. REN X J, Ll X X, LU Y H, et al. Application on HV high-strength gel water plugging system. Lithologic Reservoirs, 2018, 30(5):131-137.
[7] 韩培慧, 闫坤, 曹瑞波, 等.聚驱后油层提高采收率驱油方法. 岩性油气藏, 2019, 31(2):143-150. HAN P H, YAN K, CAO R B, et al. Oil displacement methods for enhanced oil recovery after polymer flooding. Lithologic Reservoirs, 2019, 31(2):143-150.
[8] 王平美, 罗健辉, 白风鸾, 等.国内外气井堵水技术研究进展. 钻采工艺, 2001, 24(4):28-30. WANG P M, LUO J H, BAI F L, et al. The status quo of water shutoff technology in gas well at home and abroad. Drilling & Production Technology, 2001, 24(4):28-30.
[9] 郭平, 景莎莎, 彭彩珍.气藏提高采收率技术及其对策.天然气工业, 2014, 34(2):48-55. GUO P, JING S S, PENG C Z. Technology and countermeasures for gas recovery enhancement. Natural Gas Industry, 2014, 34(2):48-55.
[10] 戴彩丽, 冯海顺, 简家斌, 等.耐高温冻胶泡沫选择性堵水剂:适用于东海气田高温气藏堵水稳产. 天然气工业, 2015, 35(3):60-67. DAI C L, FENG H S, JIAN J B, et al. A selective water-plugging system with heat-resistant gel foam:A case study from the East China Sea gas field. Natural Gas Industry, 2015, 35(3):60-67.
[11] 许寒冰, 李宜坤, 魏发林, 等.天然气井化学堵水新方法探讨. 石油钻采工艺, 2013, 35(5):111-117. XU H B, LI Y K, WEI F L, et al. Novel technical method discussion on chemical water shut-off for gas wells. Oil Drilling & Production Technology, 2013, 35(5):111-117.
[12] 陈哲.英买7区块凝析气藏储层精细描述及流体分布规律研究.北京:中国石油大学(北京), 2017. CHEN Z. The fine description and the study of fluid distribution of condensate gas reservoir in the Yingmai 7 area. Beijing:China University of Petroleum(Beijing), 2017.
[13] 唐善法, 周理志, 张大椿, 等.英买7-19凝析气藏储层液相伤害评价.天然气工业, 2009, 29(1):82-85. TANG S F, ZHOU L Z, ZHANG D C, et al. Liquid damage evaluation of condensate gas reservoir Yingmai 7-19. Natural Gas Industry, 2009, 29(1):82-85.
[14] 苗忠英, 张秋茶, 陈践发, 等.英买力地区天然气地球化学特征.天然气工业, 2008, 28(6):40-43. MIAO Z Y, ZHANG Q C, CHEN J F, et al. Geochemical behaviors of natural gas in Yingmaili area,the Tarim Basin. Natural Gas Industry, 2008, 28(6):40-43.
[15] WASSMUTH F R, GREEN K, HODGINS L, et al. Water shutoff in gas wells:Proper gel placement is the key to success. SPE Production & Facilities, 2004, 19(4):217-227.
[16] DOVAN H T, HUTCHINS R D. New polymer technology for water control in gas wells. SPE Production & Facilities, 1994, 9(4):280-286.
[17] KARIMI S, ESMAEILZADEH F, MOWLA D. Identification and selection of a stable gel polymer to control or reduce water production in gas condensate fields. Journal of Natural Gas Science & Engineering, 2014, 21:940-950.
[18] CHEN T, YONG Z, PENG K, et al. A relative permeability modifier for water control of gas wells in a low-permeability reservoir. SPE Reservoir Engineering, 1996, 11(3):168-173.
[19] HUTCHINS R D, DOVAN H T, SANDIFORD B B. Field applications of high temperature organic gels for water control. SPE 35444, 1996.
[20] CHENEVIÈRE P, FALXA P. ALFENORE J, et al. Chemical water shut off interventions in the Tunu gas field:Optimization of treatment fluids,well interventions and operational challenges. SPE 95010, 2005.
[21] JIA H, PU W F, ZHAO J Z, et al. Experimental investigation of the novel phenol formaldehyde cross-linking HPAM gel system:Based on the secondary cross-linking method of organic crosslinkers and its gelation performance study after flowing through porous media. Energy Fuels, 2011, 25(2):727-736.
[22] 付美龙, 陈刚, 唐善法, 等.油田化学原理.北京:石油工业出版社, 2015:198-201. FU M L, CHEN G, TANG S F, et al. Principles of oilfield chemistry. Beijing:Petroleum Industry Press, 2015:198-201.
[23] 贾虎, 蒲万芬.有机凝胶控水及堵水技术研究.西南石油大学学报(自然科学版), 2013, 35(6):141-152. JIA H, PU W F.Research on water control and water shutoff technologies of organic-gel. Journal of Southwest Petroleum University(Science Technology Edition), 2013, 35(6):141-152.
[24] 刘洋. 新型抗温抗盐选择性堵水剂研究. 成都:西南石油大学, 2017. LIU Y. Study on a new type of temperature and salt resistant selective plugging agent. Chengdu:Southwest Petroleum University, 2017.
[25] YANG S H, TREIBER L E. Chemical stability of polyacrylamide under simulated field conditions. SPE 14232, 1985.
[1] 张继红,郭鑫. 聚合物与葡北油田储层孔隙结构适应性研究[J]. 岩性油气藏, 2016, 28(4): 101-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .