岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 151161.doi: 10.12108/yxyqc.20250614
李春阳1, 王勃力2,3, 颜晓1, 李可赛3,4, 邓虎成3,4, 苏锦义1, 吴亚军1, 叶泰然1
LI Chunyang1, WANG Boli2,3, YAN Xiao1, LI Kesai3,4, DENG Hucheng3,4, SU Jinyi1, WU Yajun1, YE Tairan1
摘要: 川东北元坝地区自三叠纪以来受多期次构造应力作用,具有复杂的断裂、褶皱及地应力耦合特征,现今地应力的准确评价已成为气藏高效开发的关键因素之一。基于偶极横波、电成像、多井径及常规测井等资料,开展了元坝地区三叠系须家河组四段的现今地应力测井评价,并重新厘定了其构造变形时空序列。研究结果表明:①川东北元坝地区自燕山期以来主要经历了燕山中晚期的NW—SE向、喜山早期—中期的NE—SW向挤压推覆构造作用,形成了NE向构造叠加NW向改造,多期次、多走向断裂发育的现今构造格局。②须家河组四段最大水平主应力主要为110~140 MPa,最小水平主应力主要为80~100 MPa,垂向主应力主要为105~125 MPa,三向应力关系具有σH > σV> σh的走滑应力状态;区域主应力方向为NWW—SEE向。③地应力大小总体受埋深控制,断裂应力释放调整了地应力的分布特征,纵向上三叠系须家河组四段中亚段泥岩发育,受泥岩的蠕变性影响,上部地应力大小整体偏高。研究成果可为气田地质工程“甜点”优选、天然裂缝有效性分析和储层人工压裂改造等提供参考。
中图分类号:
| [1] HUANG Yanqing, LIU Zhongqun, WANG Ai, et al. Types and distribution of tight sandstone gas sweet spots of the third member of Upper Triassic Xujiahe Formation in Yuanba area, Sichuan Basin[J]. Lithologic Reservoirs, 2023, 35(2): 21-30. 黄彦庆, 刘忠群, 王爱, 等. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30. [2] FAN Lingxiao, LIU Junlong, LI Shengyu, et al. Development laws and controlling factors of natural fractures in Xujiahe Formation inTongjiang area, northeastern Sichuan[J]. Fault-Block Oil & Gas Field, 2024, 31(4): 580-588. 范凌霄, 刘君龙, 李胜玉, 等. 川东北通江地区须家河组天然裂缝发育规律及控制因素[J]. 断块油气田, 2024, 31(4): 580-588. [3] HUANG Tao, LIU Yan, HE Jianhua, et al. Evaluation method and engineering application of in-situ stress of deep tight sandstone reservoir in the second member of Xujiahe Formation in Xiaoquan-Fenggu area, western Sichuan[J]. Geology in China, 2024, 51(1): 89-104. 黄滔, 刘岩, 何建华, 等. 川西孝泉-丰谷地区须二段深层致密砂岩储层地应力大小评价方法及其工程应用[J]. 中国地质, 2024, 51(1): 89-104. [4] ZHANG Jun, MOU Jinzhi, PAN Zhejun, et al. Discussion and prospects of the development on measurement while drilling technology in oil and gas wells[J]. Petroleum Science Bulletin, 2024, 9(2): 240-259. 张军, 牟晋智, 潘哲君, 等. 巴西圆盘拉伸强度测试在岩石力学中的发展综述及新见解[J]. 石油科学通报, 2024, 9(2): 240-259. [5] YANG Donghui. Research on in-situ stress measurement method and application based on Kaiser effect of drilling core[D]. Beijing: China University of Mining & Technology(Beijing), 2019. 杨东辉. 基于钻孔岩芯Kaiser效应的地应力测试方法与应用研究[D]. 北京: 中国矿业大学(北京), 2019. [6] XU Xiaochun. A research of earth stress and rock strength parameter in hydraulic fracture[D]. Jingzhou: Yangtze University, 2012. 徐晓春. 水力压裂中地应力及岩石强度参数的研究[D]. 荆州: 长江大学, 2012. [7] WEI Shanbin, ZANG Desheng, WAN Xi, et al. Sleeve fracturing wellbore stress testing[J]. Well Construction Technology, 1997, 18(1): 25-27. 魏善斌, 臧德胜, 万禧, 等. 套筒致裂井壁应力测试[J]. 建井技术, 1997, 18(1): 25-27. [8] ZHAO Xuyang, GUO Haimin, LI Zixuan, et al. Modeling of insitu stress field and rock mechanics parameters based on logging shear wave prediction[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 235-240. 赵旭阳, 郭海敏, 李紫璇, 等. 基于测井横波预测的地应力场及岩石力学参数建模[J]. 断块油气田, 2021, 28(2): 235-240. [9] TANG Rong, LI Jinxi, LUO Chao, et al. Differences in crustal stress direction in the southern section of the Huayingshan fault zone in Sichuan Basin: Insights from in situ borehole image logging[J]. Journal of Geomechanics, 2024, 30(4): 547-562. 唐荣, 李金玺, 罗超, 等. 四川盆地华蓥山断裂带南段地应力方向的差异: 来自钻孔成像测井的启示[J]. 地质力学学报, 2024, 30(4): 547-562. [10] XING Zimeng, LI Ruixue, DENG Hucheng, et al. Simulation and zoning evaluation of in-situ stress field within ultra-deep tight sandstone reservoirs in thrust-nappe structures of Bozi-Dabei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2025, 47(2): 296-310. 邢梓萌, 李瑞雪, 邓虎成, 等. 塔里木盆地博孜-大北逆冲推覆带超深层致密砂岩地应力场模拟及分区评价[J]. 石油实验地质, 2025, 47(2): 296-310. [11] CONG Ping, YAN Jianping, JING Cui, et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: A case study from Wufeng Formation and Longmaxi Formation in X area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3): 177-188. 丛平, 闫建平, 井翠, 等. 页岩气储层可压裂性级别测井评价及展布特征: 以川南X地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188. [12] QIN Qirong, ZHU Mengyue, FAN Cunhui, et al. Structural features and analysis and genetic mechanism of Xujiahe Formation in the center of Yuanba area, Sichuan Basin[J]. Reservoir Evaluation and Development, 2017, 7(2): 1-6. 秦启荣, 朱梦月, 范存辉, 等. 四川盆地元坝中部须家河组构造形迹解析及成因机制[J]. 油气藏评价与开发, 2017, 7(2): 1-6. [13] LI Zhiwu, SONG Tianhui, WANG Zijian, et al. Strike variation evolution of the basin-mountain system in western Sichuan Longmenshan as recorded by deformation, exhumation and deposition and discussion on the period of key structural transformation[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2021, 48(3): 257-282. 李智武, 宋天慧, 王自剑, 等. 川西-龙门山盆山系统走向差异演化的变形、隆升和沉积记录及关键构造变革期讨论[J]. 成都理工大学学报(自然科学版), 2021, 48(3): 257-282. [14] ZHANG Hui, GUAN Da, XIANG Xuemei, et al. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area, northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 133-139. 章惠, 关达, 向雪梅, 等. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133-139. [15] ZHOU Zhiheng. Reservoirs characteristics and factors controlling the physical properties of the sandstone in the fourth member of Xujiahe Formation in the Bazhong area, northeastern Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2020. 周志恒. 川东北巴中地区须四段砂岩储层特征及物性控制因素[D]. 北京: 中国石油大学(北京), 2020. [16] JIA Lichun. Experimental investigation on dynamic and static Biot coefficients of transversely isotropic shale[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(Suppl 2): 4130-4139. 贾利春. 横观各向同性页岩动、静态有效应力系数试验研究[J]. 岩石力学与工程学报, 2023, 42(增刊2): 4130-4139. [17] XU Bo, WANG Zhenhua, SONG Ting, et al. Logging evaluation method of fracturability of tight sandstone reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(6): 57-64. 徐波, 王振华, 宋婷, 等. 致密砂岩储层可压裂性测井评价方法[J]. 油气地质与采收率, 2024, 31(6): 57-64. [18] WANG Yingwei, WANG Linsheng, QIN Jianhua, et al. Log evaluation method of rock mechanics and in-situ stress characteristics of tight conglomerate formations[J]. Well Logging Technology, 2021, 45(6): 624-629. 王英伟, 王林生, 覃建华, 等. 致密砾岩储层岩石力学参数及地应力测井评价方法研究[J]. 测井技术, 2021, 45(6): 624-629. [19] PENG Da, XIAO Fusen, RAN Qi, et al. Inversion of rock physics parameters based on KT model fluid substitution[J]. Lithologic Reservoirs, 2018, 30(5): 82-90. 彭达, 肖富森, 冉崎, 等. 基于KT模型流体替换的岩石物理参数反演方法[J]. 岩性油气藏, 2018, 30(5): 82-90. [20] MA Zhonggao. Experimental investigation into Biot's coefficient and rock elastic moduli[J]. Oil & Gas Geology, 2008, 29 (1): 135-140. 马中高. Biot系数和岩石弹性模量的实验研究[J]. 石油与天然气地质, 2008, 29(1): 135-140. [21] XIA Hongquan, PENG Meng, SONG Erchao. Calculating methods and application of rock anisotropic Biot coefficient[J]. Well Logging Technology, 2019, 43(5): 478-483. 夏宏泉, 彭梦, 宋二超. 岩石各向异性Biot系数的获取方法及应用[J]. 测井技术, 2019, 43(5): 478-483. [22] HUANG Tao, LI Ruixue, DENG Hucheng, et al. Prediction and zoning evaluation of in-situ stress field in deep tight sandstone reservoirs of Western Sichuan Depression, Sichuan Basin: A case study of the second member of Xujiahe Formation in Xinchang and Fenggu area[J]. Petroleum Geology & Experiment, 2024, 46(6): 1198-1214. 黄滔, 李瑞雪, 邓虎成, 等. 四川盆地川西坳陷深部致密砂岩储层地应力场预测及分区评价: 以新场-丰谷地区须家河组二段为例[J]. 石油实验地质, 2024, 46(6): 1198-1214. [23] TONG Kailing, CAI Hongyan, LI Jinxi, et al. Present stress orientations and controlling factors of shale reservoirs in LZ region, Sichuan Basin: Example of the first member of Longmaxi Formation[J]. Science Technology and Engineering, 2023, 23 (8): 3224-3236. 佟恺林, 蔡鸿燕, 李金玺, 等. 四川LZ页岩储层现今地应力方向及主控因素: 以龙一段为例[J]. 科学技术与工程, 2023, 23 (8): 3224-3236. [24] FU Jianwei, LI Hongnan, SUN Zhongchun, et al. Logging identification and controlling factors of present stress orientations of the coarse-grained clastic reservoirs in Mabei region, Junggar Basin[J]. Oil & Gas Geology, 2015, 36(4): 605-611. 付建伟, 李洪楠, 孙中春, 等. 玛北地区砂砾岩储层地应力方向测井识别及主控因素[J]. 石油与天然气地质, 2015, 36 (4): 605-611. [25] WU Wei, SHAO Guanghui, GUI Pengfei, et al. Fracture effectiveness evaluation and reservoir quality classification based on electrical imaging data: A case study of Cretaceous in Yaerxia Oilfield[J]. Lithologic Reservoirs, 2019, 31(6): 102-108. 吴伟, 邵广辉, 桂鹏飞, 等. 基于电成像资料的裂缝有效性评价和储集层品质分类: 以鸭儿峡油田白垩系为例[J]. 岩性油气藏, 2019, 31(6): 102-108. [26] ZHANG Xiaoju, HE Jianhua, XU Qinglong, et al. Distribution characteristics and disturbance mechanism of present in-situ stress field in the second member of Xujiahe Formation in Hechuan area[J]. Mineralogy and Petrology, 2022, 42(4): 71-82. 张小菊, 何建华, 徐庆龙, 等. 合川地区须二段现今地应力场分布特征与扰动机制研究[J]. 矿物岩石, 2022, 42(4): 71-82. [27] HUANG Jixin, PENG Shimi, WANG Xiaojun, et al. Application of imaging logging data in the research of fracture and ground stress[J]. Acta Petrolei Sinica, 2006, 27(6): 65-69. 黄继新, 彭仕宓, 王小军, 等. 成像测井资料在裂缝和地应力研究中的应用[J]. 石油学报, 2006, 27(6): 65-69. [28] WANG Meng, LI Mingtao, ZHANG Zhiqiang, et al. The method of evaluation ground stress based on cross dipole acoustic[J]. Offshore Oil, 2019, 39(3): 66-70. 王猛, 李明涛, 张志强, 等. 基于交叉偶极子阵列声波资料精细评价地应力方法[J]. 海洋石油, 2019, 39(3): 66-70. [29] CAI Zhidong, LI Qing, WANG Chong, et al. Prediction of strata depth and hydrocarbon attributes by using VSP multi-wave data[J]. Lithologic Reservoirs, 2019, 31(1): 106-112. 蔡志东, 李青, 王冲, 等. 利用VSP多波资料预测地层深度及油气属性[J]. 岩性油气藏, 2019, 31(1): 106-112. [30] LI Yong, HE Jianhua, CAO Feng, et al. Evaluation of in-situ stress orientations and rotational mechanical mechanisms in deep shale reservoirs: A case study of the Longmaxi Formation's first member and Wufeng Formation in the Yongchuan shale gas field, southern Sichuan Basin[J]. Geology in China, 2025, 52(1): 78-94. 李勇, 何建华, 曹峰, 等. 深层页岩储层现今地应力方向评价及其扰动力学机制: 以川南永川区块五峰组-龙马溪组一段为例[J]. 中国地质, 2025, 52(1): 78-94. |
| [1] | 江梦雅, 蒋中发, 刘龙松, 王江涛, 陈海龙, 王学勇, 刘海磊. 准噶尔盆地达巴松凸起三叠系白碱滩组油气地球化学特征及来源[J]. 岩性油气藏, 2025, 37(6): 71-87. |
| [2] | 苏帅, 屈红军, 尹虎, 张磊岗, 杨晓锋. 致密砂岩储层孔喉结构分形特征及其对储层物性的影响——以鄂尔多斯盆地富县地区三叠系长8段为例[J]. 岩性油气藏, 2025, 37(6): 88-98. |
| [3] | 缪志伟, 李世凯, 张文军, 肖伟, 刘明, 于童. “断缝体”致密砂岩复杂网状裂缝地震预测技术——以四川盆地北部三叠系须家河组为例[J]. 岩性油气藏, 2025, 37(6): 140-150. |
| [4] | 赵宝银, 杨晓利, 徐颖新, 孟令箭, 崔紫瑄, 王方鲁, 刘剑伦, 于福生. 渤海湾盆地南堡凹陷新生代构造演化特征及控藏作用[J]. 岩性油气藏, 2025, 37(5): 59-69. |
| [5] | 肖文华, 杨军, 严宝年, 王建国, 李少勇, 马淇琳, 李宗霖, 薛欢召. 鄂尔多斯盆地环庆地区三叠系长8致密砂岩储层特征及成藏主控因素[J]. 岩性油气藏, 2025, 37(3): 23-32. |
| [6] | 邓高山, 董雪梅, 余海涛, 张洁, 岳喜伟, 任军民, 姜涛. 准噶尔盆地沙湾凹陷三叠系百口泉组油气成藏条件及勘探潜力[J]. 岩性油气藏, 2025, 37(3): 59-72. |
| [7] | 杨旭, 白鸣生, 龚汉渤, 李皋, 陶祖文. 川西新场地区三叠系须二段构造裂缝特征及定量预测[J]. 岩性油气藏, 2025, 37(3): 73-83. |
| [8] | 张兆辉, 张皎生, 刘俊刚, 邹建栋, 张建伍, 廖建波, 李智勇, 赵雯雯. 鄂尔多斯盆地陇东地区三叠系长81亚段岩石相测井识别及勘探意义[J]. 岩性油气藏, 2025, 37(3): 95-107. |
| [9] | 刘迎宝, 李元昊, 翟文彬, 赵文暄, 李哲, 杨龙华, 郭雅倩. 极缓坡湖盆浅水三角洲前缘砂体类型及成因模式——以鄂尔多斯盆地郝滩地区三叠系长81亚段为例[J]. 岩性油气藏, 2025, 37(3): 140-152. |
| [10] | 李想, 付磊, 魏璞, 李俊飞, 徐港, 曹倩倩, 钟杨, 王振鹏. 沉积古地貌恢复及古地貌对沉积体系的控制作用——以准噶尔盆地石西地区三叠系百口泉组为例[J]. 岩性油气藏, 2025, 37(2): 38-48. |
| [11] | 罗冰, 文华国, 廖义沙, 张兵, 姚永君, 温思宇, 杨凯. 川东北地区二叠系吴家坪组二段页岩储层特征及有利区分布[J]. 岩性油气藏, 2025, 37(1): 1-12. |
| [12] | 梁锋, 曹哲. 鄂尔多斯盆地华池地区三叠系长7页岩油储层特征、形成环境及富集模式[J]. 岩性油气藏, 2025, 37(1): 24-40. |
| [13] | 杨杰, 张文萍, 丁朝龙, 石存英, 马云海. 川中地区三叠系须家河组二段致密气储层特征及主控因素[J]. 岩性油气藏, 2025, 37(1): 137-148. |
| [14] | 吴佳, 赵卫卫, 刘钰晨, 李慧, 肖颖, 杨迪, 王嘉楠. 鄂尔多斯盆地延安地区三叠系长7页岩源储配置及油气富集规律[J]. 岩性油气藏, 2025, 37(1): 170-181. |
| [15] | 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22. |
|
||