岩性油气藏 ›› 2016, Vol. 28 ›› Issue (6): 30–35.doi: 10.3969/j.issn.1673-8926.2016.06.005

• 油气地质 • 上一篇    下一篇

鄂尔多斯盆地东南部长7段陆相页岩孔隙特征与吸附能力

徐勇1,2,胡士骏1,陈国俊1,吕成福1,薛莲花1   

  1. 1.甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室,兰州730000;2.中国科学院大学,北京100049
  • 出版日期:2016-11-10 发布日期:2016-11-10
  • 第一作者:徐勇(1986-),男,中国科学院大学在读博士研究生,研究方向为储层地质学。地址:(730000)甘肃省兰州市城关区东岗西路382 号中国科学院油气资源研究重点实验室。E-mail:xymjjx@163.com
  • 基金资助:
    国家自然科学基金项目“鄂尔多斯盆地三叠系陆相页岩微孔隙特征与天然气赋存方式研究”(编号:41272144)、国家自然科学基金青年 基金项目“四川盆地下古生界海相页岩微孔隙特征及形成机制研究”(编号:414402130)及中国科学院战略性先导科技专项(B 类)“页岩气勘探开发基础理论与关键技术“(编号:XDB10010300)联合资助

Pore characteristics and adsorption capacity of Chang 7 shale of Yanchang Formation in the southeastern Ordos Basin

Xu Yong 1,2, Hu Shijun 1, Chen Guojun 1, Lü Chengfu1, Xue Lianhua1   

  1. 1. Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Online:2016-11-10 Published:2016-11-10

摘要: 为了深入研究鄂尔多斯盆地东南部延长组长7 段页岩孔隙特征与吸附能力,选取8 个岩心样品进行氩离子抛光—场发射扫描电镜、低温氮气吸附及等温吸附等实验。结果表明:该段页岩主要发育粒间孔、粒内孔、黄铁矿晶间孔、有机质孔及微裂缝等5 种微观孔隙类型;BET 比表面积为1.166~6.964 m2/g,孔体积为0.004 8~0.024 2 cm3/g,平均孔径为8.812~17.882 nm。等温吸附实验模拟了长7 段实际温压条件下的页岩吸附量,其最大吸附量为2.0~4.0 mg/g。长7 段页岩孔隙以中孔为主,大孔和微孔次之,纳米级孔隙发育,具有较好的吸附能力,可为进一步开展页岩气资源评价提供理论依据。

关键词: 长4+5油层组:油气成藏条件, 油气成藏机制, 林镇地区:鄂尔多斯盆地

Abstract:

In order to investigate the pore characteristics and methane adsorption capacity of Chang 7 shale of Yanchang Formation in the southeastern Ordos Basin, eight core samples were selected to carry out experiments, such as Arion milling field emission scanning electron microscope, low-temperature nitrogen adsorption and isothermal adsorption. The results show that five types of microcosmic pores are mainly developed,including intergranular pores, intragranular pores, intergranular pores in pyrite, organic pores and microfractures. The specific surface area ranges from 1.166 m2/g to 6.964 m2/g by BET equation, pore volume ranges from 0.004 8 m3/g to 0.024 2 m3/g by BJH equation, and the average pore diameter ranges from 8.812 nm to 17.882 nm. The methane adsorption capacity of Chang 7 shale under actual reservoir condition was simulated, and the maximum adsorption capacity is 2.0-4.0 mg/g. Mesopores are the main pores in Chang 7 shale, macropore and micropores come second, and nano scale pores are also developed, which indicates that the shale reservoir have good adsorption capacity. This study can provide theoretical basis for the further shale gas resource evaluation.

Key words: Chang 4+5 oil reservoir set, hydrocarbon forming conditions, hydrocarbon form ing mechanism, Linzhen area, Ordos Basin

[1] 夏 嘉,段 毅,高 苑,张晓丽,何金先,徐 丽 . 鄂尔多斯盆地林镇地区长4+5油层组油气成藏条件与机制[J]. 岩性油气藏, 2013, 25(4): 11-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .