岩性油气藏 ›› 2018, Vol. 30 ›› Issue (1): 118.doi: 10.3969/j.issn.1673-8926.2018.01.001
• 论坛与综述 • 下一篇
Carlos Zavala1,2, 潘树新3
Carlos Zavala1,2, PAN Shuxin3
摘要: 河流在洪水期携带大量陆源碎屑,当其入湖或入海后,由于洪水密度大于周围水体的密度,洪水发生下沉并沿盆地底部长距离运移,形成陆源下潜流或异重流。异重流形成的相关沉积岩被统称为异重岩。异重岩通常由一个底部的反粒序单元和一个顶部的正粒序单元组成,反粒序单元反映了异重流能量的逐渐增强,正粒序反映了流体能量的逐渐减弱。异重流以3种方式搬运碎屑颗粒,即底载搬运、悬浮搬运和漂浮搬运。根据搬运方式的不同,异重岩分为3类岩相,即底载成因的B类岩相、悬载成因的S类岩相和漂浮物成因的L类岩相。异重流的沉积充填形成了河道、堤岸和朵叶体3类微相,内部岩相变化极为发育。异重岩的沉积特征虽然典型且较易识别,但是常被误认为是砂质碎屑流、滨岸相、三角洲相或河流相沉积。
中图分类号:
[1] SYVITSKI J P M. Supply and flux of sediment along hydrological pathways:Research for the 21 st Century. Global and Plane-tary Change,2003,39(1/2):1-11. [2] BATES C. Rational theory of delta formation. AAPG Bulletin, 1953,37:2119-2162. [3] MULDER T,SYVITSKI J P M,MIGEON S,et al. Marine hyperpycnal flows:initiation,behavior and related deposits. A review:Marine and Petroleum Geology,2003,20:861-882. [4] MULDER T,CHAPRON E. Flood deposits in continental and marine environments:Character and signi fi cance//SLATT R M,ZAVALA C,Sediment transfer from shelf to deep water-Revisiting the delivery system. AAPG Studies in Geology,2011:1-30. [5] GALLOWAY W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems//BROUSSARD M L. Deltas,models for exploration:Houston Geological Society,Houston,Texas:1975:87-98. [6] MULDER T,SYVITSKI J P M. Turbidity current generated at river mouths during exceptional discharges to the world oceans. Journal of Geology,1995,103(3):285-299. [7] PARSONS J D,BUSH J,SYVITSKI J P M. Hyperpycnal flow formation with small sediment concentrations. Sedimentology, 2001,48(2):465-478. [8] ZAVALA C,CARVAJAL J,MARCANO,et al. Sedimentological indexes:a new tool for regional studies of hyperpycnal systems. AAPG Hedberg Conference"Sediment transfer from shelf to deep water-revisiting the delivery mechanisms". Ushuaia-Patagonia,Argentina,2008. [9] ZAVALA C,ARCURI M,GAMERO H,et al. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits//SLATT R M,ZAVALA C. Sediment transfer from shelf to deep water-revisiting the delivery system. AAPG Studies in Geology, 2011,61:31-51. [10] ZAVALA C,ARCURI M,GAMERO DÍAZ H,et al. The composite bed:a new distinctive feature of hyperpycnal deposition.2007 AAPG Annual Convention and Exhibition. Long Beach,California USA,2007. [11] KASSEM A,IMRAN J. Simulation of turbid underflows generated by the plunging of a river. Geology,2001,29(9):655-658. [12] ZAVALA C,ARCURI M. Intrabasinal and Extrabasinal turbidites:origin and distinctive characteristics. Sedimentary Geology,2016,337:36-54. [13] DE ROOIJ F,DALZIEL S B. Time and space resolved measurements of deposition under turbidity currents//MCCAFFREY B,KNELLER B,PEAKALL J. Particulate gravity currents. International Association of Sedimentologists,Special Publication, 2001,31:207-215. [14] PEAKALL J FELIX M,MCCAFFREY B,et al. Particulate gravity currents:Perspectives//MCCAFFREY B,KNELLER B,PEAKALL J. Particulate gravity currents. International Asso-ciation of Sedimentologists,Special Publication,2001,31:1-8. [15] ZAVALA C,PONCE J,DRITTANTI D,et al. Ancient lacustrine hyperpycnites:a depositional model from a case study in the Rayoso Formation(Cretaceous)of west-central Argentina. Journal of Sedimentary Research,2006,76:41-59. [16] MULDER T,ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology,2001,48:269-299. [17] NAKAJIMA T. Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea. Journal of Sedimentary Research, 2006,76(1):60-73. [18] PRIOR D B,BORNHOLD B D,WISEMAN W J,et al. Turbidity current activity in a British Columbia fjord. Science,1987,237(8240):1330-1333. [19] JOHNSON K S,PAULL C K,BARRY J P,et al. A decadal record of underflows from a coastal river into the deep sea. Geology, 2001,29(1934):1019-1022. [20] FARNSWORTH K L. Monterey Canyon as a conduit for sediment to the deep ocean. Moss Landing:MBARI,2000:25. [21] BAUDIN F,DISNAR J R,MARTINEZ P,et al. Distribution of the organic matter in the channel levees systems of the Congo mud-rich deep-sea fan(West Africa):Implication for deep offshore petroleum source rocks and global carbon cycle. Marine and Petroleum Geology,2010,27:995-1010. [22] GWIAZDA R,PAULL C K,USSLER Ⅲ W,et al. Evidence of modern fine-grained sediment accumulation in the Monterey Fan from measurements of the pesticide DDT and its metabolites. Marine Geology,2015,363:125-133. [23] KHRIPOUNOFF A,VANGRIESHEIM A,BABONNEAU N, et al. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth. Marine Geology,2003,194(3/4):151-158. [24] HEEZEN B C,MENZIES R J,SCHNEIDER E D,et al. Congo submarine canyon. AAPG Bulletin,1964,48(7):1126-1149. [25] SAVOYE B,BABONNEAU N,DENNIELOU B,et al. Geological overview of the Angola-Congo Margin,the Congo deepsea fan and its submarine valleys. Deep sea research,Part Ⅱ:Topical Studies in Oceanography,2009,56:2169-2182. [26] KAO S J,DAI M,SELVARAJ K,et al. Cyclone-driven deepsea injection of freshwater and heat by hyperpycnal flow in the subtropics. Geophysical Research Letters,2010,37(21):389-400. [27] MANSURBEG H,EL-GHALI M A K,MORAD S,et al. The impact of meteoric water on the diagenetic alterations in deepwater,marine siliciclastic turbidites. Journal of Geochemical Exploration,2006,89(1):254-258. [28] ZAVALA C,ARCURI M,GAMERO H. Towards a genetic model for the analysis of hyperpycnal systems:2006 GSAAnnualMeeting, Philadelphia,PA,USA. Topical session T136:River Generated Hyperpycnal Events and Resulted Deposits in Modern and Ancient Environments,2006. [29] ZAVALA C. Towards a genetic facies tract for the analysis of Hyperpycnal deposits:Keynote address. AAPG Hedberg Conference"Sediment transfer from shelf to deepwater-revisiting the deliverymechanisms",Ushuaia-Patagonia,Argentina,2008. [30] MUTTI E,DAVOLI G,TINTERRI R,et al. The importance of ancient fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins:Memorie di Scienze Geologiche, Universita di Padova,1996,48(1):233-291. [31] MANVILLE V,WHITE J D L. Incipient granular mass flows at the base of sediment-laden floods,and the roles of flow competence and flow capacity in the deposition of stratified bouldery sands. Sedimentary Geology,2003,155(1):157-173. [32] BOUMA A. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jack-fork Group),Ouachita Mountains,Arkansas and Oklahoma.AAPG Bulletin,1997,81(3):470-472. [33] SHANMUGAM G. Slides,slumps,debris flows and turbidity currents.STEELE J H,TUREKIAN K K,THORPE S A. Encyclopedia of Ocean Sciences.2 nd ed. Elsevier,978-0-12-374473-9 p,2008:447-467. [34] SHANMUGAM G. Slides,slumps,debris flows,turbidity currents and bottom currents. Reference Module in Earth Systems and Environmental Sciences. Elsevier,2016:87. [35] LI X B,CHEN Q L,LIU H Q,et al. Features of sandy debris flows of the Yanchang Formation in the Ordos Basin and its oil and gas exploration significance. Acta Geologica Sinica,2011, 85(5):1187-1202. [36] ZOU C,WANG L,LI Y,et al. Deep-lacustrine transformation of sandy debrites into turbidites,Upper Triassic,central China. Sedimentary Geology,2012,265-266(Suppl 1):143-155. [37] 王建民,王佳媛.鄂尔多斯盆地西南部长7深水浊积特征与储层发育.岩性油气藏,2017,29(4):11-19. WANG J M,WANG J Y. Deep-water turbidite characteristics and its reservoir development of Chang 7 oil layers in southwestern Ordos Basin. Lithologic Reservoirs,2017,29(4):11-19. [38] MUTTI E,DAVOLI G,TINTERRI R. Flood-related gravityflow deposits in fluvial and fluvio-deltaic depositional systems and their sequence-stratigraphic implications//POSAMENTIER H W,MUTTI E,Second high-resolution sequence stratigraphy conference,Tremp,Abstract Book,1994:137-143. [39] SALLER A,LIN R,DUNHAM J. Leaves in turbidite sands:The main source of oil and gas in the deep-water Kutei Basin, Indonesia. AAPG Bulletin,2006,90(10):1585-1608. [40] GRIMM K A,FÖLLMI K B. Doomed pioneers:allochthonous crustacean tracemakers in anaerobic basinal strata,Oligo-Miocene San Gregorio Formation,Baja California Sur,Mexico:Palaios, 1994,9(4):313-334. [41] SANDERS J E. Primary sedimentary structures formed by turbidity currents and related sedimentation mechanisms//MIDDLETON G V. Primary sedimentary structures and their hydrodinamic interpretation. SEPM Special Publication,1965,12:192-219. [42] KNELLER B,BRANNEY M. Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, 1995,42(4):607-616. [43] CAMACHO H,BUSBY C J,KNELLER B. A new depositional model for the classical turbidite locality at San Clemente State Beach,California. AAPG Bulletin,2002,86(9):1543-1560. [44] BANERJEE I. Experimental study on the effect of deceleration on the vertical sequence of sedimentary structures in silty sediments.Journal of Sedimentary Petrology,1977,41(5):771-783. [45] ARNOTT R W C,HAND B M. Bedforms,primary structures and grain fabric in the presence of suspended sediment rain. Journal of Sedimentary Petrology,1989,59(6):1062-1069. [46] SUMNER E J,AMY L A,TALLING P J. Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research,2008,78:529-547. [47] ZAVALA C,ARCURI M,BLANCO VALIENTE L. The importance of plant remains as diagnostic criteria for the recognition of ancient hyperpycnites. Revue de Paléobiologie,2012,11(6):457-469. [48] AMY L A,KNELLER B,MCCAFFREY W D. Facies architecture of the Grès de Peïra Cava,SE France:Landward stacking patterns in ponded turbiditic basins. Journal of the Geological Society, 2007,164(1):143-162. [49] ARCURI M,ZAVALA C. Very thick massive sandstone bodies:Origin and internal architecture. AAPG annual conference,Session 3853,Effects of active structural growth and confined basins on sandbody architecture I,Long Beach,California,2007. [50] ARCURI M,ZAVALA C. Hyperpycnal shelfal lobes-some examples of the lotena and lajas formations,Neuquén Basin,Argentina. AAPG Hedberg conference"Sediment transfer from shelf to deepwater-revisiting the delivery mechanisms". UshuaiaPatagonia,Argentina,2008. [51] BOUMAA H. Sedimentology of some flysch deposits,a graphic approach to facies interpretation. Elsevier Co.,2010,168,Amsterdam. [52] SIMONS D B,RICHARDSON E V,NORDIN C F. Sedimentary structures generated by flow on alluvial channels//MIDDLETON G V. Primary sedimentary structures and their hydrodynamic interpretation. SEPM Special Publication,1965,12:34-52. [53] HARMS J C,SOUTHARD J B,SPEARING D R,et al. Depositional environments as interpreted from primary sedimentary structures and stratification sequences.Tulsa,SEPM Short Course, No.2,1975:161. [54] HARMS J C,SOUTHARD J B,WALKER R G. Structures and sequences in clastic rocks.Tulsa,SEPM short course notes 9, 1982:249. [55] Southard J B. Experimental determination of bedform stability. Annual Review of Earth and Planetary Sciences,1991,19(1):423-455. [56] MORSILLI M,POMAR L. Internal waves vs. surface storm waves:a review on the origin of hummocky cross-stratification. Terra Nova,2012,24(4):273-282. [57] GUY H P,SIMMONS D B,RICHARDSON E. Summary of alluvial channel data from flume experiments,1956-1961,Professional papers of the U.S. Geological Survey,1966,462:96. [58] HUNTER R E. Terminology of cross-stratified sedimentary layers and climbing-ripple structures. Journal of Sedimentary Research,1977,47(2):697-706. [59] JOPLING A V,WALKER R G. Morphology and origin of rippledrift cross lamination,with examples of Pleistocene of Massachusetts. Journal of Sedimentary Petrology,1968,38(4):971-984. [60] ASHLEY G M,SOUTHARD J B,BOOTHROYD J C. Deposition of climbing-ripple beds:a flume simulation. Sedimentology, 2010,29(1):67-79. [61] JOBE Z R,LOWE D R,MORRIS W R. Climbing-ripple successions in turbidite systems:depositional environments,sedimentation rates and accumulation times. Sedimentology,2012,59(3):867-898. [62] ZAVALA C,GAMERO H,ARCURI M. Lofting rhythmites:a diagnostic feature for the recognition of hyperpycnal deposits:2006 GSA Annual Meeting,Philadelphia,PA,USA,Topical session T136:River Generated Hyperpycnal Events and Resulted Deposits in Modern andAncient Environments,2006. [63] ZAVALA C,BLANCO VALIENTE L,VALLEZ Y. The origin of lofting rhythmites. Lessons from thin sections. AAPG Hedberg Conference"Sediment Transfer from Shelf to Deepwater -Revisiting the Delivery Mechanisms",Ushuaia-Patagonia,Argentina,2008. [64] PETTER A L,STEEL R J. Deepwater-Slope Channels and Hyperpycnal Flows from the Eocene of the Central Spitsbergen Basin:Predicting Basin-Floor Sands from a Shelf Edge/Upper Slope Perspective. AAPG Annual Meeting,Calgary,Alberta,Canada, 2005. [65] LAMB M P,MYROW P M,LUKENS C,et al. Deposits from wave-influenced turbidity currents:Pennsylvanian Minturn Formation,Colorado,USA. Journal of Sedimentary Research,2008, 78(7/8):480-498. [66] SPARKS R S J,BONNECAZE R T,HUPPERT H E,et al. Sediment-laden gravity currents with reversing buoyancy. Earth and Planetary Science Letters,1993,114(2/3):243-257. [67] KNELLER B,BUCKEE C. The structure and fluid mechanics of turbidity currents:a review of some recent studies and their geological implications. Sedimentology,2000,47(Suppl 1):62-94. [68] MUTTI E,SONNINO M. Compensation cycles:a diagnostic feature of turbidite sandstone lobes//VALLONI,R,COLELLA A,SONNINO,et al. Abstr. Int. Assoc. Sediment,2 nd Europe. Reg. Mtg.,Bologna,1981:120-123. [69] HESSE R,RASHID H,KHODABAKHSH S. Fine-grained sediment lofting from meltwater-generated turbidity currents during Heinrich events. Geology,2004,23(5):449-452. [70] HESSE R,KHODABAKHSH S. Significance of fine-grained sediment lofting from melt-water generated turbidity currents for the timing of glaciomarine sediment transport into the deep sea:Sedimentary Geology,2006,186(1/2):1-11. [71] HOYAL D C J D,VAN WAGONER J C,ADAIR N L,et al. Sedimentation from jets:a depositional model for clastic deposits of all scales and environments:Search and Discovery Article # 80081,2003. [72] WINKER C D. High-resolution seismic stratigraphy of a late Pleistocene submarine fan ponded by salt-withdrawal minibasins on the Gulf of Mexico continental slope. Proc. 3 rd Annual Offshore Technol. Conf.,1996,28(1):619-628. [73] SINCLAIR H D,TOMASSO M. Depositional evolution of confined turbidite basins. Journal of Sedimentary Research,2002,72(4):451-456. [74] TONIOLO H,LAMB M P,PARKER G. Depositional turbidity currents in diapiric minibasins on the continental slope:formulation and theory. Journal of Sedimentary Research,2006,76(5):783-797. [75] 潘树新,刘化清,ZAVALA C,等.大型坳陷湖盆异重流成因的水道-湖底扇系统——以松辽盆地白垩系嫩江组一段为例. 石油勘探与开发,2017,44(6):860-870. PAN S X,LIU H Q,ZAVALA C,et al. Sublacustrine hyperpycnal channel-fan system in a large depression basin:a case study of Nen 1 member,Cretaceous Nenjiang Formation in the Songliao Basin,NE China. Petroleum Exploration and Development,2017, 44(6):860-870. |
[1] | 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76. |
[2] | 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88. |
[3] | 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134. |
[4] | 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155. |
[5] | 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144. |
[6] | 王洪星, 韩诗文, 胡佳, 潘志浩. 松辽盆地德惠断陷白垩系火石岭组凝灰岩储层预测及成藏主控因素[J]. 岩性油气藏, 2024, 36(5): 35-45. |
[7] | 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84. |
[8] | 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34. |
[9] | 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126. |
[10] | 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18. |
[11] | 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83. |
[12] | 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171. |
[13] | 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88. |
[14] | 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159. |
[15] | 邓远, 陈轩, 覃建华, 李映艳, 何吉祥, 陶鑫, 尹太举, 高阳. 吉木萨尔凹陷二叠系芦草沟组一段沉积期古地貌特征及有利储层分布[J]. 岩性油气藏, 2024, 36(1): 136-144. |
|