岩性油气藏 ›› 2015, Vol. 27 ›› Issue (3): 11–17.doi: 10.3969/j.issn.1673-8926.2015.03.002

• 讨论与争鸣 • 上一篇    下一篇

水平井交替压裂裂缝间距优化及影响因素分析

杨兆中1,苏 洲1,2,李小刚1,张 城3,谢中成4,邓 科5   

  1.  1. 西南石油大学 油气藏地质及开发工程国家重点实验室,成都 610500 ; 2. 中国石油塔里木油田分公司油气工程研究院,新疆 库尔勒 841000 ; 3. 中国石油川庆钻探股份有限公司 塔里木工程公司,新疆 库尔勒 841000 ; 4. 中海石油(中国)有限公司上海分公司 工程技术作业中心,上海 200030 ;5. 中国石油西南油气田分公司 川东北气矿,四川 达州 635000
  • 出版日期:2015-05-26 发布日期:2015-05-26
  • 第一作者:杨兆中( 1969- ),男,博士,教授,主要从事低渗透油气藏增产改造与油气藏数值模拟研究的教学和科研工作。 地址:( 610500 )四川省成都市新都区新都大道 8 号西南石油大学油气藏地质及开发工程国家重点实验室。 电话:( 028 ) 83032338 。 E-mail : yzzycl@vip.sina.com 。
  • 基金资助:

    国家自然科学基金石化联合基金重点项目“页岩气低成本高效钻完井技术基础研究”(编号: U1262209 )和国家重大科技专项“深煤层煤层气增产改造技术研究”(编号: 2011ZX05042-002-001 )联合资助

Fracture spacing optimization for horizontal well alternating fracturing and influencing factors

YANG Zhaozhong1, SU Zhou 1,2, LI Xiaogang1, ZHANG Cheng3, XIE Zhongcheng4, DENG Ke5   

  1.  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Southwest Petroleum University ,Chengdu 610500 , China ; 2. Research Institute of Oil and Gas Engineering , PetroChina Tarim Oilfield Company , Korla 841000 , Xinjiang , China ; 3. Tarim Engineering Company , Chuanqing Drilling Engineering Company Limited , CNPC , Korla 841000 , Xinjiang , China ; 4. Engineering Technical Operation Center of CNOOC Shanghai Branch , Shanghai 200030 , China ; 5. Northeast Sichuan Gas Field , PetroChina Southwest Oil and Gas Field Company , Dazhou 635000 , Sichuan , China
  • Online:2015-05-26 Published:2015-05-26

摘要:

为使水平井交替压裂在非常规油气储集层中形成大规模高效复杂体积缝网,需对交替压裂裂缝间距进行优化分析。 从相邻 2 条压裂裂缝诱导应力叠加效应对初始水平主应力差的影响出发,建立了裂缝高度不同且缝内净压力也不同的物理模型,提出了交替压裂第一次压裂裂缝和第二次压裂裂缝临界裂缝间距及中间裂缝最佳起裂位置的确定方法。 分析发现:前两次压裂裂缝临界裂缝间距随储集层岩石泊松比增大而减小,随裂缝高度和缝内净压力增大而增大;中间裂缝最佳起裂位置距第一次压裂裂缝的距离随储集层岩石泊松比增大而减小,随裂缝高度增大而增大,而缝内净压力对中间裂缝最佳起裂位置的影响较小。 通过实例,将改进后的方法与已有方法进行对比分析后发现,改进后的临界裂缝间距和中间裂缝最佳起裂位置较已有方法能更准确地计算出诱导应力场,对非常规油气储集层交替压裂形成高效复杂体积缝网具有指导意义。

关键词: 交替压裂, 复杂体积缝网, 应力干扰, 叠加原理, 裂缝间距优化

Abstract:

 For creation of large-scale effective complex fracture networks of unconventional oil/gas plays, fracture spacing for alternating fracturing should be optimized. Started from the effect of total induced stresses on initial horizontal stress anisotropy, the total induced stresses computational model of two adjacent hydraulic fractures with different fracture height and fracture net pressure was built. Subsequently, optimization approaches for critical fracture spacing of the first two hydraulic fractures and optimal fracture initiation position of the third one were proposed. The analysis result shows that critical fracture spacing between the first two hydraulic fractures decreased with the increase of Poisson’s ratio, and increased with the increase of fracture height and fracture net pressure; the optimal fracture initiation position of the third fracture apart from the first one decreased with the increase of Poisson’s ratio, and increased with the increase of fracture height. However, fracture net pressure has negligible impact on the optimal fracture initiation position of the third fracture. Finally, with comparison and analysis of a case study, the optimization results of the proposed approaches were proved to be much more advantageous and economic over the existed one, which is of significant guidance for creation of complex fracture networks with alternating fracturing technology in unconventional oil/gas reservoirs.

Key words:  alternating fracturing, complex volumetric fracture networks, stress shadow, principle of superposition, fracture spacing optimization

参考文献(References):

[1] 祝彦贺,胡前泽,陈桂华,等.北美 A-29 区块页岩油资源潜力分析[J].岩性油气藏,2013,25(3):66-70.

Zhu Yanhe,Hu Qianze,Chen Guihua,et al. Study on resource potential of shale oil in A-29 Block,North America[J]. Lithologic Reservoirs,2013,25(3):66-70. 

[2]王民,石蕾,王文广,等.中美页岩油、致密油发育的地球化学特征对比[J].岩性油气藏,2014,26(3):67-73.

Wang Min,Shi Lei,Wang Wenguang,et al. Comparative study on geochemical characteristics of shale oil between China and U.S.A[J]. Lithologic Reservoirs,2014,26(3):67-73.

[3]李传亮,朱苏阳.页岩气其实是自由气[J].岩性油气藏,2013,25(1):1-3.

Li Chuanliang,Zhu Suyang. Shale gas is free gas underground[J].Lithologic Reservoirs,2013,25(1):1-3.

[4]邹才能,杨智,张国生,等.常规-非常规油气“有序聚集”理论认识及实践意义[J].石油勘探与开发,2014,41(1):14-27.

Zou Caineng,Yang Zhi,Zhang Guosheng,et al. Conventional and unconventional petroleum“orderly accumulation”:Concept and practical significance[J]. Petroleum Exploration and Development,

2014,41(1):14-27.

[5]林森虎,邹才能,袁选俊,等.美国致密油开发现状及启示[J].岩性油气藏,2011,23(4):25-30.

Lin Senhu,Zou Caineng,Yuan Xuanjun,et al. Status quo of tight oil exploration in the United States and its implication[J]. Lithologic Reservoirs,2011,23(4):25-30.

[6]黄籍中.四川盆地页岩气与煤层气勘探前景分析[J].岩性油气藏,2009,21(2):116-120.

Huang Jizhong. Exploration prospect of shale gas and coal-bed methane in Sichuan Basin[J]. Lithologic Reservoirs,2009,21(2): 116-120.

[7]Mayerhofer M J,Lolon E P,Warpinski N R,et al. What is stimulated reservoir volume?[R]. SPE 119890,2010:89-98.

[8]Soliman M Y,Loyd E,Adams D. Geomechanics aspects of multiple fracturing of horizontal and vertical wells[R]. SPE 86992,2008: 217-228.

[9]吴奇,胥云,王晓泉,等.非常规油气藏体积改造技术———内涵、优化设计与实现[J].石油勘探与开发,2012,39(3):352-358.

Wu Qi,Xu Yun,Wang Xiaoquan,et al. Volume fracturing technology of unconventional reservoirs:Connotation,optimization design and implementation[J]. Petroleum Exploration and Development, 2012,39(3):352-358.

[10]吴奇,胥云,王腾飞,等.增产改造理念的重大变革———体积改造技术概论[J].天然气工业,2011,31(4):7-12.

Wu Qi,Xu Yun,Wang Tengfei,et al. The revolution of reservoir stimulation:An introduction of volume fracturing[J]. Natural Gas Industry,2011,31(4):7-12.

[11]吴奇,胥云,刘玉章,等.美国页岩气体积改造技术现状及对我国的启示[J].石油钻采工艺,2011,33(2):1-7.

Wu Qi,Xu Yun,Liu Yuzhang,et al. The current situation of stimulated reservoir volume for shale in U.S. and its inspiration to China [J]. Oil Drilling & Production Technology,2011,33(2):1-7.

[12]张小龙,张同伟,李艳芳,等.页岩气勘探和开发进展综述[J]. 岩性油气藏,2013,25(2):116-122.

Zhang Xiaolong,Zhang Tongwei,Li Yanfang,et al. Research advance in exploration and development of shale gas[J]. Lithologic Reservoirs,2013,25(2):116-122.

[13]Soliman M Y,East L,Augustine J. Fracturing design aimed at enhancing fracture complexity[R]. SPE 130043,2010:1-20.

[14]East L,Soliman M Y,Augustine J . Methods for enhancing far-field complexity in fracturing operations[R]. SPE 133380,2010:1-17.

[15]Jo H. Optimizing fracture spacing to induce complex fractures in a hydraulically fractured horizontal wellbore[R]. SPE 154930, 2012: 1-14.

[16]Jo H. Optimal fracture spacing of a hydraulically fractured horizontal wellbore to induce complex fractures in a reservoir under high in-situ stress anisotropy[R]. IPTC 16717,2013:1-12.

[17]邵尚奇,田守嶒,李根生,等.水平井缝网压裂裂缝间距的优化[J].石油钻探技术,2014,42(1):86-90.

Shao Shangqi,Tian Shouceng,Li Gensheng,et al. Fracture spacing optimization for fracture-network fracturing in horizontal wells[J].Petroleum Drilling Techniques,2014,42(1):86-90.

[18]李小刚,罗丹,李宇,等.同步压裂缝网形成机理研究进展[J]. 新疆石油地质,2013,34(2):228-231.

Li Xiaogang,Luo Dan,Li Yu,et al. Advances of mechanism study of fracture networks formed by simultaneous fracturing process[J]. Xinjiang Petroleum Geology,2013,34(2):228-231.

[19]Green A E,Sneddon I N. The distribution of stress in the neighbourhood of a flat elliptical crack in an elastic solid[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1950,46(1): 159-163.

[20]Bunger A P,Zhang X,Jeffrey R G. Parameters affecting the interaction among closely spaced hydraulic fractures[R]. SPE 140426,2011:292-306.

[21]刘立峰,张士诚.通过改变近井地应力场实现页岩储集层缝网压裂[J].石油钻采工艺,2011,33(4):71-74.

Liu Lifeng,Zhang Shicheng. Net fracturing by changing the surrounding in-situ stress in shale reservoirs[J]. Oil Drilling & Production Technology,2011,33(4):71-74.

[22]纪宏博,李贵长,光新军,等.页岩气储层改造有效性分析[J]. 石油天然气学报(江汉石油学院学报),2011,33(9):145-149.

Ji Hongbo,Li Guichang,Guang Xinjun,et al. Analysis of fracture efficiency in shale gas reservoirs reconstruction[J]. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute),2011, 33(9):145-149.

[23]Fisher M K,Heinze J R,Harris C D,et al. Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping[R]. SPE 90051,2004:1-11.

[24] Kresse O,Weng X,Gu H,et al. Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations[J].Rock Mechanics and Rock Engineering,2013,46:555-568.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .