岩性油气藏 ›› 2024, Vol. 36 ›› Issue (5): 67–76.doi: 10.12108/yxyqc.20240507

• 地质勘探 • 上一篇    下一篇

琼东南盆地Ⅱ号断裂带新生界多期热流体活动与天然气运聚特征

黄向胜, 闫琢玉, 张东峰, 黄合庭, 罗程飞   

  1. 中海油能源发展股份有限公司 工程技术分公司, 广东 湛江 524057
  • 收稿日期:2022-12-29 修回日期:2023-03-22 出版日期:2024-09-01 发布日期:2024-09-04
  • 第一作者:黄向胜(1988—),男,工程师,主要从事油气地质勘探实验与研究工作。地址:(524057)广东省湛江市坡头区南调路南油二区研究院。Email:huangxsh2@cnooc.com.cn。
  • 通信作者: 闫琢玉(1991—),男,硕士,工程师,主要从事油气地质勘探实验与管理工作。Email:yanzhy3@cnooc.com.cn。
  • 基金资助:
    广东省软科学研究计划项目“广东省海上高温高压油气藏勘探开发企业重点实验室”(编号:2018B030323028)资助。

Characteristics of multi-phase thermal fluid activity and natural gas migration-accumulation of Cenozoic in No. 2 fault zone of Qiongdongnan Basin

HUANG Xiangsheng, YAN Zhuoyu, ZHANG Dongfeng, HUANG Heting, LUO Chengfei   

  1. CNOOC EnerTech- Drilling & Production Co., Zhanjiang 524057, Guangdong, China
  • Received:2022-12-29 Revised:2023-03-22 Online:2024-09-01 Published:2024-09-04

摘要: 运用流体包裹体、有机地球化学分析和压力模拟手段,综合研究了琼东南盆地东部Ⅱ号断裂带新生界多期热流体活动及天然气运聚特征。研究结果表明:①琼东南盆地东部Ⅱ号断裂带BX19-2构造天然气主要为烃气和CO2,烃气为煤型气和油型气的混合气,但不同气层中天然气组分含量差异较大,浅部三亚组气层为相对高含量的烃气(体积分数为83.93%)和低含量的有机成因CO(2体积分数为7.11%);较深部的陵水组气层为含量相对较低的烃气(体积分数为16.10%~76.63%)和含量相对较高的幔源CO(2体积分数为18.70%~81.56%)。②流体包裹体和岩石地球化学参数显示烃气运移与3期热流体活动相关,每期热流体的活动深度及引起的热异常程度均存在一定差异。3期含烃热流体活动的时间分别为中新世晚期(约8.8 Ma)、上新世(约4.5~4.1 Ma)和第四纪(约1.1~0.1 Ma)。③热流体是以断裂为主要通道发生垂向高效快速充注。来自宝岛凹陷深部的幔源CO2在上新世晚期—第四纪(约2.2~0.5 Ma)发生充注,并驱替了陵水组储层的烃气。因此,宝岛凹陷Ⅱ号断裂带附近的圈闭可能具有钻遇高CO2含量的风险。

关键词: 天然气成藏, 多期热流体活动, 垂向运移, 流体包裹体, 幔源CO2, 三亚组, 陵水组, 新生界, Ⅱ号断裂带, 琼东南盆地

Abstract: Based on fluid inclusion analysis,organic geochemistry data,and pressure simulation,the multiphase thermal fluid activity and natural gas migration-accumulation in the No. 2 fault zone of the BX19-2 structure in eastern Qiongdongnan Basin were studied. The results show that:(1)The natural gas in the BX19-2 structure primarily consists of hydrocarbon gases and CO2,with the hydrocarbon gases being a mix of coal-derived gas and oil-derived gas. However,there is a significant variation in the composition of natural gas across different gas zones. The shallow gas zones in the Sanya Formation exhibit a relatively high content of hydrocarbon gases(volume fraction of 83.93%)and a low content of organogenic CO2(volume fraction of 7.11%). In contrast, the deeper gas zones in the Lingshui Formation contain relatively lower concentrations of hydrocarbon gases (volume fraction ranging from 16.10% to 76.63%)and higher concentrations of mantle-derived CO2(volume fraction ranging from 18.70% to 81.56%).(2)Fluid inclusions and geochemical parameters of rocks indicated that the hydrothermal activity was related to hydrocarbon migration,with variations in the depth and extent of the induced thermal anomalies. There were three phases of hydrocarbon-bearing hydrothermal activities occurred during the late Miocene(approximately 8.8 Ma),Pliocene(approximately 4.5 to 4.1 Ma),and Quaternary (approximately 1.1 to 0.1 Ma),respectively.(3)The hydrothermal fluids primarily utilized faults as major conduits for vertical,efficient,and rapid charging. Mantle-derived CO2 from the deep Baodao Sag was injected during the late Pliocene to Quaternary period(approximately 2.2 to 0.5 Ma),displacing the hydrocarbon gases accumulated in the Lingshui Formation. Therefore,traps near the No. 2 fault zone of the Baodao Sag may pose a risk of encountering gas zones with high CO2 content.

Key words: natural gas accumulation, multi-phase thermal fluid activity, vertical migration, fluid inclusion, mantle-derived CO2, Sanya Formation, Lingshui Formation, Cenozoic, No. 2 fault zone, Qiongdongnan Basin

中图分类号: 

  • TE122.1
[1] PARNELL J. Geofluids:Origin, migration, and evolution of fluids in sedimentary basins[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1995, 32(2):A55.
[2] PARNELL J. Potential of palaeofluid analysis for understanding oil charge history[J]. Geofluids, 2010, 10:73-82.
[3] CARTWRIGHT J A. Episodic basin-wide hydrofracturing of overpressured Early Cenozoic mudrock sequences in the North Sea Basin[J]. Marine and Petroleum Geology, 1994, 11(5):587-607.
[4] GARVEN G. Continental scale groundwater flow and geologic processes[J]. Annual Review of Earth and Planetary Sciences, 1995, 23:89-117.
[5] HAO F, LI S T, GONG Z S, et al. Thermal regime, interreservoir compositional heterogeneities, and reservoir-filling history of the Dongfang Gas Field, Yinggehai Basin, South China Sea:Evidence for episodic fluid injections in overpressured basins?[J]. AAPG Bulletin, 2000, 84(5):607-626.
[6] 陈红汉, 张启明, 施继锡. 琼东南盆地含烃热流体活动的流体包裹体证据[J]. 中国科学(D辑), 1997, 27(4):343-348. CHEN Honghan, ZHANG Qiming, SHI Jixi. Evidence of fluid inclusion for thermal fluid-bearing hydrocarbon movements in Qiongdongnan Basin, South China Sea[J]. Science in China (Series D), 1997, 27(4):343-348.
[7] 龙华山, 向才富, 牛嘉玉, 等. 歧口凹陷滨海断裂带热流体活动及其对油气成藏的影响[J]. 石油学报, 2014, 35(4):673-684. LONG Huashan, XIANG Caifu, NIU Jiayu, et al. Hydrothermal fluid flow and its influence on the hydrocarbon migration and accumulation along Binhai fault in Qikou sag, Bohai Bay Basin[J]. Acta Petrolei Sinica, 2014, 35(4):673-684.
[8] 郭小文, 何生, 施和生, 等. 番禺低隆起PY30-1构造热流体活动及油气成藏[J]. 石油勘探与开发, 2010, 37(3):297-303. GUO Xiaowen, HE Sheng, SHI Hesheng, et al. Hot fluid activities and the hydrocarbon accumulation in the PY30-1 structure of Panyu Low Uplift, Pearl River Mouth Basin[J]. Petroleum Exploration and Development, 2010, 37(3):297-303.
[9] 李林, 张成, 闫春, 等. 琼东南盆地华光凹陷大型海底重力滑动系统特征及其成因机制[J]. 地球科学, 2021, 46(10):3707-3716. LI Lin, ZHANG Cheng, YAN Chun, et al. Characteristics and genetic mechanism of a large-scale submarine gravity driven system in Huaguang Depression, Qiongdongnan Basin[J]. Earth Science, 2021, 46(10):3707-3716.
[10] 郭书生, 廖高龙, 梁豪, 等. 琼东南盆地BD21井深水区天然气勘探重大突破及意义[J].中国石油勘探, 2021, 26(5):49-59. GUO Shusheng, LIAO Gaolong, LIANG Hao, et al. Major breakthrough and significance of deep-water gas exploration in well BD21 in Qiongdongnan Basin[J]. China Petroleum Exploration, 2021, 26(5):49-59.
[11] 廖凤蓉, 吴小奇, 黄士鹏. 中国东部CO2气地球化学特征及其气藏分布[J]. 岩石学报, 2012, 28(3):939-948. LIAO Fengrong, WU Xiaoqi, HUANG Shipeng. Geochemical characteristics of CO 2 gases in eastern China and the distribution patterns of their accumulations[J]. Acta Petrologica Sinica, 2012, 28(3):939-948.
[12] 徐新德, 张迎朝, 熊小峰, 等. 南海北部莺-琼盆地CO2成因与成藏特征及其分布规律[J]. 海洋地质前沿, 2017, 33(7):45-54. XU Xinde, ZHANG Yingchao, XIONG Xiaofeng, et al. Genesis, accumulation and distribution of CO2 in the YinggehaiQiongdongnan basins, Northern South China Sea[J]. Marine Geology Frontiers, 2017, 33(7):45-54.
[13] HU B, WANG L S, YAN W B, et al. The tectonic evolution of the Qiongdongnan Basin in the northern margin of the South China Sea[J]. Journal of Asian Earth Sciences, 2013, 77:163-182.
[14] 刘妍鷨, 陈红汉, 苏奥, 等. 从含油气检测来洞悉琼东南盆地东部发育始新统烃源岩的可能性[J]. 地球科学, 2016, 41(9):1539-1547. LIU Yanhua, CHEN Honghan, SU Ao, et al. Eocene source rock determination in Qiongdongnan Basin, the South China Sea:A hydrocarbon detection perspective[J]. Earth Science, 2016, 41(9):1539-1547.
[15] 姜华, 王华, 肖军, 等. 应用古地貌分析方法进行有利区带预测:以琼东南盆地②号断裂带为例[J]. 石油勘探与开发, 2009, 36(4):436-441. JIANG Hua, WANG Hua, XIAO Jun, et al. Palaeogeomorphologic prediction of favorable zones:Take Fault ② of Qiongdongnan Basin as an example[J]. Petroleum Exploration and Development, 2009, 36(4):436-441.
[16] 戴金星, 宋岩. 中国东部无机成因天然气及其气藏形成条件[M]. 北京:科学出版, 1995:1-50. DAI Jinxing, SONG Yan. Inorganic gas and its reservoir forming conditions in eastern China[M]. Beijing:Science Press, 1995:1-50.
[17] MAMYRIN B A, ANUYRIYEV G S, KAMENSKII I L, et al. Determination of the isotopic composition of atmospheric helium[J]. Geochemistry International, 1970, 7:498-505.
[18] 王晓锋, 刘全有, 刘文汇, 等. 中国东部含油气盆地幔源氦气资源富集成藏机理[J]. 中国科学:地球科学, 2022, 52(12):2441-2453. WANG Xiaofeng, LIU Quanyou, LIU Wenhui, et al. Accumulation mechanism of mantle-derived helium resources in petroliferous basins, eastern China[J]. Scientia Sinica(Terrae), 2022, 52(12):2441-2453.
[19] BOURDET J, BURRUSS R C, CHOU I M, et al. Evidence for a palaeo-oil column and alteration of residual oil in a gascondensate field:Integrated oil inclusion and experimental results[J]. Geochimica et Cosmochimica Acta, 2014, 142:362-385.
[20] 孙永传, 陈红汉, 李蕙生, 等. 莺-琼盆地Ya13-1气田热流体活动与有机/无机成岩响应[J]. 地球科学, 1995, 20(3):276-282. SUN Yongchuan, CHEN Honghan, LI Huisheng, et al. Thermal fluid flows and their organic/inorganic diagenetic responses in Ya13-1 gas field of Yinggehai-Qiongdongnan basins, South China Sea[J]. Earth Science, 1995, 20(3):276-282.
[21] LAW B E, NUCCIO V F, BARKER C E. Kinky vitrinite reflectance well profiles:Evidence of paleopore pressure in lowpermeability, gas-bearing sequences in Rocky Mountain foreland basins[J]. AAPG Bulletin, 1989, 73(8):999-1010.
[22] HAO F, ZOU H Y, GONG Z S. et al. Hierarchies of overpressure retardation of organic matter maturation:Case studies from petroleum basins in China[J]. AAPG Bulletin, 2007, 91(10):1467-1498.
[23] 解习农, 姜涛, 王华, 等. 莺歌海盆地底辟带热流体突破的地层水化学证据[J]. 岩石学报, 2006, 22(8):2243-2248. XIE Xinong, JIANG Tao, WANG Hua, et al. Expulsion of overpressured fluid revealed by geochemistry of formation water in the dirpirie structures of Yinggehai Basin[J]. Acta Petrologica Sinica, 2006, 22(8):2243-2248.
[24] SHI W Z, XIE Y H, WANG Z F, et al. Characteristics of overpressure distribution and its implication for hydrocarbon exploration in the Qiongdongnan Basin[J]. Journal of Asian Earth Sciences, 2013, 66:150-165.
[25] 杨雨然, 张亚, 谢忱, 等. 川西北地区中二叠统栖霞组热液作用及其对储层的影响[J]. 岩性油气藏, 2019, 31(6):44-53. YANG Yuran, ZHANG Ya, XIE Chen, et al. Hydrothermal action of Middle Permian Qixia Formation in northwestern Sichuan Basin and its effect on reservoirs[J]. Lithologic Reservoirs, 2019, 31(6):44-53.
[26] XIAO X M, XIONG M, TIAN H, et al. Determination of the source area of the Ya13-1 gas pool in the Qiongdongnan Basin, South China Sea[J]. Organic Geochemistry, 2006, 37(9):990-1002.
[27] 谢瑞, 张尚锋, 周林, 等. 川东地区侏罗系自流井组大安寨段致密储层油气成藏特征[J]. 岩性油气藏, 2023, 35(1):108-119. XIE Rui, ZHANG Shangfeng, ZHOU Lin, et al. Hydrocarbon accumulation characteristics of tight reservoirs of Da'anzhai member of Jurassic Ziliujing Formation in eastern Sichuan Basin[J]. Lithologic Reservoirs, 2023, 35(1):108-119.
[28] 李建忠, 白斌, 白莹, 等. 川西北地区二叠系栖霞组超深层气藏流体演化过程与成藏模式[J]. 石油勘探与开发, 2022, 49(4):627-636. LI Jianzhong, BAI Bin, BAI Ying, et al. Fluid evolution and hydrocarbon accumulation model of ultra-deep gas reservoirs in Permian Qixia Formation of northwest Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2022, 49(4):627-636.
[29] 唐建云, 张刚, 史政, 等. 鄂尔多斯盆地丰富川地区延长组流体包裹体特征及油气成藏期次[J]. 岩性油气藏, 2019, 31(3):20-26. TANG Jianyun, ZHANG Gang, SHI Zheng, et al. Characteristics of fluid inclusions and hydrocarbon accumulation stages of Yanchang Formation in Fengfuchuan area, Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(3):20-26.
[30] 梁正中, 许红涛, 李昌. 鄂尔多斯盆地西南边缘地区长8段充注成藏模式南北对比[J]. 油气藏评价与开发, 2022, 12(6):918-926. LIANG Zhengzhong, XU Hongtao, LI Chang. Comparison of accumulation model of Chang-8 reservoirs between HuanxiPengyang area in southwestern Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6):918-926.
[31] 刘庆顺, 杨波, 杨海风, 等. 储层定量荧光技术在渤海油田油层判别及油气充注过程分析中的应用[J]. 中国海上油气, 2017, 29(2):27-35. LIU Qingshun, YANG Bo, YANG Haifeng, et al. Application of quantitative fluorescence techniques in oil zone identification and hydrocarbon charging process research in Bohai oilfield[J]. China Offshore Oil and Gas, 2017, 29(2):27-35.
[32] 朱明, 张向涛, 杨兴业, 等.珠江口盆地惠南半地堑恩平组烃类充注特征与砂岩致密化成因分析[J]. 中国海上油气, 2018, 30(6):14-24. ZHU Ming, ZHANG Xiangtao, YANG Xingye, et a1. Hydrocarbon charging characteristics and sandstone densification genesis of Enping Formation in Huinan half-graben, Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2018, 30(6):14-24.
[33] 石好果, 林会喜.准中4区块侏罗系储层成岩及油气充注特征研究[J]. 特种油气藏, 2017, 24(6):18-22. SHI Haoguo, LIN Huixi. Study on the characteristics of Jurassic reservoir diagenesis and hydrocarbon filling in middle 4 block of Jungar Basin[J]. Special Oil & Gas Reservoirs, 2017, 24(6):18-22.
[34] 朱光有, 杨海军, 张斌, 等. 油气超长运移距离[J]. 岩石学报, 2013, 29(9):3192-3212. ZHU Guangyou, YANG Haijun, ZHANG Bin, et al. Ultra-long distance migration of hydrocarbon[J]. Acta Petrologica Sinica, 2013, 29(9):3192-3212.
[35] 李博, 崔军平, 李莹, 等. 伊陕斜坡吴起地区延长组油气成藏期次分析[J]. 岩性油气藏, 2021, 33(6):21-28. LI Bo, CUI Junping, LI Ying, et al. Hydrocarbon accumulation phases of Yanchang Formation in Wuqi area, Yishan slope[J]. Lithologic Reservoirs, 2021, 33(6):21-28.
[36] 杜金虎, 王招明, 胡素云, 等. 库车前陆冲断带深层大气区形成条件与地质特征[J]. 石油勘探与开发, 2012, 39(4):385-393. DU Jinhu, WANG Zhaoming, HU Suyun, et al. Formation and geological characteristics of deep giant gas provinces in the Kuqa foreland thrust belt, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2012, 39(4):385-393.
[37] 杨楷乐, 何胜林, 杨朝强, 等. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征:以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1):83-95. YANG Kaile, HE Shenglin, YANG Zhaoqiang, et al. Diagenesis characteristics of tight sandstone reservoirs with high temperature, overpressure and high CO2 content:A case study of Neogene Meishan-Huangliu Formation in LD10 area, Yinggehai Basin[J]. Lithologic Reservoirs, 2023, 35(1):83-95.
[1] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[2] 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
[3] 满晓, 胡德胜, 吴洁, 宫立园, 柳智萱, 姜应德, 赵晔. 北部湾盆地涠西南凹陷始新统流一段湖底扇发育特征及成藏模式[J]. 岩性油气藏, 2023, 35(4): 137-144.
[4] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新生界断层精细表征及地质意义[J]. 岩性油气藏, 2023, 35(4): 50-60.
[5] 王建功, 李江涛, 李翔, 高妍芳, 张平, 孙秀建, 白亚东, 左洺滔. 柴西地区新生界湖相微生物碳酸盐岩岩相组合差异性及控制因素[J]. 岩性油气藏, 2023, 35(3): 1-17.
[6] 屈童, 高岗, 徐新德, 王瑞, 甘军, 梁刚, 游君君. 三角洲—浅海沉积体系泥质沉积规律模拟实验——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2022, 34(1): 24-33.
[7] 李博, 崔军平, 李莹, 李金森, 赵金, 陈彦武. 伊陕斜坡吴起地区延长组油气成藏期次分析[J]. 岩性油气藏, 2021, 33(6): 21-28.
[8] 杨水胜, 王汇智, 闫骁龙, 付国民. 鄂尔多斯盆地中南部侏罗系直罗组流体包裹体特征[J]. 岩性油气藏, 2021, 33(6): 39-47.
[9] 丁超, 郭顺, 郭兰, 郭小波, 杜贵超, 吴洪帅. 鄂尔多斯盆地南部延长组长8油藏油气充注期次[J]. 岩性油气藏, 2019, 31(4): 21-31.
[10] 唐建云, 张刚, 史政, 章星, 陈玉宝. 鄂尔多斯盆地丰富川地区延长组流体包裹体特征及油气成藏期次[J]. 岩性油气藏, 2019, 31(3): 20-26.
[11] 叶博, 梁晓伟, 宋娟, 曹润荣, 毛振华, 郝炳英. 鄂尔多斯盆地演武地区侏罗系延安组油藏成藏特征[J]. 岩性油气藏, 2018, 30(4): 65-73.
[12] 毛雪莲, 朱继田, 姚哲, 徐守立, 唐历山. 琼东南盆地深水区中央峡谷砂体成因与展布规律[J]. 岩性油气藏, 2017, 29(6): 60-68.
[13] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46-54.
[14] 武爱俊, 徐建永, 滕彬彬, 肖伶俐, 康波, 李凡异, 印斌浩. “动态物源”精细刻画方法与应用——以琼东南盆地崖南凹陷为例[J]. 岩性油气藏, 2017, 29(4): 55-63.
[15] 陈思明,侯明才,房启飞,凡 闪,姚清洲,周俊峰 . 塔北隆起英买 2 地区奥陶系油气成藏特征及富集规律[J]. 岩性油气藏, 2015, 27(6): 64-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[3] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[4] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[5] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[6] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[7] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[8] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[9] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[10] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .