岩性油气藏 ›› 2025, Vol. 37 ›› Issue (1): 90–101.doi: 10.12108/yxyqc.20250108

• 地质勘探 • 上一篇    下一篇

准噶尔盆地陆梁地区侏罗系西山窑组钙质夹层成因及勘探意义

何岩1, 许维娜1, 党思思1, 牟蕾1, 林少玲2, 雷章树2   

  1. 1. 中国石油新疆油田公司, 新疆 克拉玛依 834000;
    2. 长江大学 录井技术与工程研究院, 湖北 荆州 430000
  • 收稿日期:2024-08-25 修回日期:2024-09-20 出版日期:2025-01-01 发布日期:2025-01-04
  • 第一作者:何岩(1989—),男,硕士,高级工程师,主要从事油气田开发研究工作。地址:(834000)新疆克拉玛依市准噶尔路32号新疆油田分公司勘探开发研究院。Email:cathy77@163.com。
  • 通信作者: 林少玲(1999—),女,长江大学在读研究生,研究方向为储层表征与建模。Email:18819779662@163.com。
  • 基金资助:
    国家科技重大专项“深层油气资源经济评价方法与评价标准”(编号:2017ZX05008-006-004-002)和国家自然科学青年基金“冲积扇储层孔隙结构复杂模态成因机制及其分布模式”(编号:41502126)联合资助。

Genesis and exploration significance of calcareous intercalation of Jurassic Xishanyao Formation in Luliang area,Junggar Basin

HE Yan1, XU Weina1, DANG Sisi1, MOU Lei1, LIN Shaoling2, LEI Zhangshu2   

  1. 1. Research Institute of Exploration and Development, Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    2. Institute of Mud Logging Technology and Engineering, Yangtze University, Jingzhou 434023, Hubei, China
  • Received:2024-08-25 Revised:2024-09-20 Online:2025-01-01 Published:2025-01-04

摘要: 关于钙质夹层的研究对于油田开发中后期至关重要。基于岩心描述、铸体薄片、扫描电镜、常规测井、CT、XRD和生产动态等资料,利用层次结构分析法、多维互动储层构型表征方法、三维嵌入式夹层建模和油藏数值模拟等方法,对陆梁油田陆9井区侏罗系西山窑组钙质夹层发育特征、成因、分布模式及三维模型开展了研究。研究结果表明:①准噶尔盆地陆梁地区侏罗系西山窑组钙质夹层主要分布在致密中细砂岩中,是典型的物性夹层,具有特低孔、低渗、较明显的“三低两高”的测井响应等特征。②研究区水下分流河道丰富的沉积物供给以及在三角洲前缘生物碎屑矿化过程溶解的Ca2+和CO32-离子转化为固态碳酸钙,为钙质夹层的形成奠定了物质基础;钙质夹层主要形成于成岩期,按照成因可划分为2类,一类发育于近泥岩地层的薄砂层中,为成岩演化胶结型;另一类发育于物性较好、连通性较好的河道砂体中—底部及河道叠置处,为次生孔隙充填胶结型。③研究区钙质夹层厚度为0.25~2.00 m,长为200~1 300 m,宽为100~900 m,平面分布较连续,在垂直物源方向变化较大,呈薄层透镜状。④钙质夹层对剩余油分布控制明显,易形成透镜状、条带状等形态的剩余油富集区,研究区剩余油主要分布于J2x41-3和J2x42-1小层。

关键词: 钙质夹层, 储层构型, 储层建模, 油藏数值模拟, 孔隙结构, 剩余油, 西山窑组, 侏罗系, 陆梁地区, 准噶尔盆地

Abstract: Based on core description,cast thin slice,scanning electron microscopy,conventional logging,CT, XRD,production dynamics and other data,the development characteristics,genesis,distribution pattern and 3D model of calcareous intercalation of Jurassic Xishanyao Formation in well 9 area of Luliang Oilfield are studied by means of hierarchical structure analysis,multi-dimensional interactive reservoir configuration characterization, 3D embedded intercalation modeling and reservoir numerical simulation. The results showed that:(1)The calcareous intercalations are mainly distributed in the densified medium and fine sandstone,and are typical physical intercalations. Its physical properties are characterized by extremely low porosity and low permeability,and it is a typical physical intercalation with“three low and two high”logging response characteristics.(2)The abundant sediment supply from underwater distributary channels and the mineralization process of bioclastic debris at the delta front,where dissolved Ca2+ and CO32- are converted into solid calcium carbonate,provide the sedimentary material basis for the formation of calcareous layers. Calcareous layers primarily form during the diagenetic stage. Based on their genesis,they can be divided into two main types:one type is the cementation of thin sand layers within the proximity of mudstone formations,and those are calcareous cementation of diagenetic evolution;the other type develops in river channel sand bodies with good physical properties and connectivity,specifically at the base and overlapping areas of the channels,where secondary porosity is filled and cemented in pores. (3)It is mainly distributed of calcareous intercalation,with a thickness of about 0.25-2.00 m,a length of about 200-1 300 m and a width of about 100-900 m. The planar distribution is relatively continuous,and the direction of vertical material source varies greatly,and it is thin layer lenticular.(4)The calcareous interlayer has obvious control over the distribution of residual oil,forming residual oil-rich zones in the form of lenses and strips,etc. The residual oil in the study area is mainly distributed in J2x41-3 and J2x42-1 layers.

Key words: calcareous interlayer, reservoir architecture, reservoir modeling, reservoir numerical simulation, pore structure, residual oil, Xishanyao Formation, Jurassic, Luliang area, Junggar Basin

中图分类号: 

  • TE121.3
[1] 许磊,范洪军,范廷恩,等. 沉积成因约束的辫状河三角洲泥质夹层表征[J]. 西南石油大学学报(自然科学版),2017,39(5):31-40. XU Lei,FAN Hongjun,FAN Tingen,et al. Braided river delta muddy interbed characteristics with sediment-contributing factors as control[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2017,39(5):31-40.
[2] 印森林,吴胜和,许长福,等. 砂砾质辫状河沉积露头渗流地质差异分析:以准噶尔盆地西北缘三叠系克上组露头为例[J]. 中国矿业大学学报,2014,43(2):286-293. YIN Senlin,WU Shenghe,XU Changfu,et al. Percolation differences of sedimentary outcrop in sand-gravel braided river:A case study of Triassic upper Karamay formation outcrop in the northwest edge of Junggar basin[J]. Journal of China University of Mining & Technology,2014,43(2):286-293.
[3] 童强,余建国,田云吉,等. 演武油田Y116井区延8段构型界面约束下的单河道砂体构型[J]. 岩性油气藏,2020,32(3):144-158. TONG Qiang,YU Jianguo,TIAN Yunji,et al. Architecture characterization of single distributary channel sand bodies restricted by architecture interface of Yan 8 member in Y116 well area,Yanwu Oilfield[J]. Lithologic Reservoirs,2020,32(3):144-158.
[4] HOU Qingjie,JIN Qiang,LI Weizhong,et al. Calcareous interlayer causes and logging identification for the shawan formation of the Chunfeng oilfield[J]. The Open Petroleum Engineering Journal,2017,10:134-142.
[5] 杜猛,向勇,贾宁洪,等. 玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J]. 岩性油气藏,2021,33(5):120-131. DU Meng,XIANG Yong,JIA Ninghong,et al. Pore structure characteristics of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag[J]. Lithologic Reservoirs,2021,33(5):120-131.
[6] 王敏,赵国良,冯敏,等. 砂质辫状河储层隔夹层分布模式及其对边底水运移的影响:以南苏丹P油田Fal块为例[J]. 油气地质与采收率,2017,24(2):8-14. WANG Min,ZHAO Guoliang,FENG Min,et al. Distribution pattern of intercalations and its impact on migration of edge and bottom water in sandy braided-river reservoirs:A case study of Fal structure in P Oilfield,South Sudan[J]. Petroleum Geology and Recovery Engineering,2017,24(2):8-14.
[7] 朱宏绶. 洲城油田厚油层隔夹层分布特征及对开发效果的影响[J]. 油气藏评价与开发,2013,3(3):30-36. ZHU Hongshou. Distribution characteristics and development effect of interbeds in thick oil layer of Zhoucheng oilfield[J]. Reservoir Evaluation and Development,2013,3(3):30-36.
[8] FU Chao,XIE Yuhong,WANG Hui,et al. Types and sedimentary genesis of barriers and interlayers in the composite turbidite sand bodies of a deep-water canyon:A case study of the Central Canyon in the Qiongdongnan Basin[J]. Natural Gas Industry B,2023,10:511-521.
[9] 刘阳平,吴博然,于忠良,等. 辫状河砂岩储层三维地质模型重构技术:以冀东油田高尚堡区块新近系馆陶组为例[J]. 岩性油气藏,2022,34(4):159-170. LIU Yangping,WU Boran,YU Zhongliang,et al. Reconstruction of 3D geological model of braided river sandstone reservoirs:A case study of Neogene Guantao Formation in Gaoshangpu block,Jidong Oilfield[J]. Lithologic Reservoirs,2022,34(4):159-170.
[10] 印森林,陈恭洋,戴春明,等. 河口坝内部储层构型及剩余油分布特征:以大港油田枣南断块长轴缓坡辫状河三角洲为例[J]. 石油与天然气地质,2015,36(4):630-639. YIN Senlin,CHEN Gongyang,DAI Chunming,et al. Reservoir architecture and remaining oil distribution in mouth bar:A case study on the braided delta of long-axis gentle slope in Zaonan fault block of Dagang oilfield[J]. Oil & Gas Geology,2015,36(4):630-639.
[11] 温立峰,吴胜和,岳大力. 粗粒辫状河心滩内部泥质夹层分布新模式:以吴官屯野外露头为例[J]. 石油地质与工程,2016, 30(4):5-7. WEN Lifeng,WU Shenghe,YUE Dali. New distribution pattern of mudstone interlayer within batture bar reservoir of braided river:A case study of field outcrops in Wuguantun[J]. Petroleum Geology and Engineering,2016,30(4):5-7.
[12] HAN Rubing,LIU Qiang,JIANG Tongwen,et al. Feature,origin and distribution of calcareous interlayers:A case of Carboniferous Donghe sandstone in Hade Oil Field,Tarim Basin,NW China[J]. Petroleum Exploration and Development,2014,41(4):475-484.
[13] 吴倩,方小宇,王玉,等. 南海A油田珠江组钙质层成因与控制因素分析[J]. 岩性油气藏,2016,28(3):68-73. WU Qian,FANG Xiaoyu,WANG Yu,et al. Origin and controlling factors of calcareous interlayers of Zhujiang Formation in Nanhai A oilfield[J]. Lithologic Reservoirs,2016,28(3):68-73.
[14] 郑荣臣,李宏涛,史云清,等.川东北元坝地区三叠系须三段沉积特征及成岩作用[J]. 岩性油气藏,2021,33(3):13-26. ZHENG Rongchen,LI Hongtao,SHI Yunqing,et al. Sedimentary characteristics and diagenesis of the third member of Triassic Xujiahe Formation in Yuanba area,northeastern Sichuan Basin[J]. Lithologic Reservoirs,2021,33(3):13-26.
[15] DENG Ya,GUO Rui,TIAN Zhongyuan,et al. Geologic features and genesis of the barriers and intercalations in carbonates:A case study of the Cretaceous Mishrif Formation,West Qurna oil field,Iraq[J]. Petroleum Exploration and Development,2016,43(1):149-157.
[16] 方秀泽,范柱国,党思思,等. 陆梁油田西山窑组一段油藏储集层地质建模及应用[J]. 新疆石油地质,2020,41(5):599-604. FANG Xiuze,FAN Zhuguo,DANG Sisi,et al. Reservoir geological modelling and its application of the first member of Xishanyao Formation in Luliang Oilfield[J]. Xinjiang Petroleum Geology,2020,41(5):599-604.
[17] 印森林,吴胜和,冯文杰,等. 冲积扇储集层内部隔夹层样式:以克拉玛依油田一中区克下组为例[J]. 石油勘探与开发, 2013,40(6):757-763. YIN Senlin,WU Shenghe,FENG Wenjie,et al. Patterns of inter-layers in the alluvial fan reservoirs:A case study on Triassic Lower Karamay Formation,Yizhong area,Karamay Oilfield,NW China[J]. Petroleum Exploration and Development, 2013,40(6):757-763.
[18] ZHANG Penghui,ZHANG Jinliang,WANG Shanzhang. Characteristics and distribution of insulating layer and interlayer in Funing Formation of Gaoji Oilfield[J]. Advanced Materials Research,2012,361:47-50.
[19] 邓旭波. 准噶尔盆地中部1区块J1s2储层非均质隔夹层特征[J]. 科学技术与工程,2016,16(14):27-31. DENG Xubo. Reservoir interlayer features of section J1s2 in block Zhong 1 of Junggar Basin[J]. Science Technology and Engineering,2016,16(14):27-31.
[20] 曹江骏,王茜,王刘伟,等. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024,36(3):158-171. CAO Jiangjun,WANG Xi,WANG Liuwei,et al. Characteristics and main controlling factors of interbedded shale oil reservoirs of Triassic Chang 7 member in Heshui area,Ordos Basin[J]. Lithologic Reservoirs,2024,36(3):158-171.
[21] 崔耀科,杜贵超,王凤琴,等.甘泉油田长8油藏水下分流河道砂体钙质夹层特征及成因[J]. 新疆石油地质,2023,44(2):161-168. CUI Yaoke,DU Guichao,WANG Fengqin,et al. Characteristics and genesis of calcareous interlayers in underwater distributary channel sandbodies in Chang 8 reservoir,Ganquan Oilfield[J]. Xinjiang Petroleum Geology,2023,44(2):161-168.
[22] 郭春涛,倪玲梅,陈继福. 塔中地区含砾砂岩段隔夹层特征及分布规律[J]. 科学技术与工程,2020,20(7):2625-2633. GUO Chuntao,NI Lingmei,CHEN Jifu. Characteristics and distribution of interlayer in gravel-bearing sandstone segment in Tazhong area[J]. Science Technology and Engineering,2020, 20(7):2625-2633.
[23] 赵笑笑,闫建平,王敏,等. 沾化凹陷沙河街组湖相泥页岩夹层特征及测井识别方法[J]. 岩性油气藏,2022,34(1):118-129. ZHAO Xiaoxiao,YAN Jianping,WANG Min,et al. Logging identification method of lacustrine shale interlayers of Shahejie Formation in Zhanhua Sag[J]. Lithologic Reservoirs,2022,34(1):118-129.
[24] 戴危艳,李少华,谯嘉翼,等. 储层不确定性建模研究进展[J]. 岩性油气藏,2015,27(4):127-133. DAI Weiyan,LI Shaohua,QIAO Jiayi,et al. Progress of reservoir uncertainty modeling[J]. Lithologic Reservoirs,2015,27(4):127-133.
[25] 刘艳祥,吕文雅,曾联波,等. 鄂尔多斯盆地庆城油田长7页岩油储层多尺度裂缝三维地质建模[J]. 地学前缘,2024,31(5):103-116. LIU Yanxiang,LYU Wenya,ZENG Lianbo,et al. Threedimensional modeling of multiscale fractures in Chang 7 shale oil reservoir in Qingcheng oilfield,Ordos Basin[J]. Earth Science Frontiers,2024,31(5):103-116.
[26] 吴小军,苏海斌,张士杰,等. 砂砾质辫状河储层构型解剖及层次建模:以新疆油田重32井区齐古组油藏为例[J]. 沉积学报,2020,38(5):933-945. WU Xiaojun,SU Haibin,ZHANG Shijie,et al. Architecture anatomy and hierarchical modeling of sand-gravel braided river reservoirs:A case study of Zhong32 wells area,Qigu Formation reservoir,Fengceng oilfield[J]. Acta Sedimentologica Sinica,2020,38(5):933-945.
[27] 张建兴,林承焰,张宪国,等. 基于储层构型与油藏数值模拟的点坝储层剩余油分布研究[J]. 岩性油气藏,2017,29(4):146-153. ZHANG Jianxing,LIN Chengyan,ZHANG Xianguo,et al. Remaining oil distribution of point bar reservoir based on reservoir architecture and reservoir numerical simulation[J]. Lithologic Reservoirs,2017,29(4):146-153.
[28] FARAHI M M M,AHMADI M,DABIR B. Model-based water-flooding optimization using multi-objective approach for efficient reservoir management[J]. Journal of Petroleum Science and Engineering,2021,196:107988.
[29] 刘超,李云鹏,张伟,等. 渤海海域A油田夹层控制下的剩余油分布模式[J]. 岩性油气藏,2017,29(5):148-154. LIU Chao,LI Yunpeng,ZHANG Wei,et al. Remaining oil distribution pattern controlled by interlayer in A oilfield in Bohai Sea[J]. Lithologic Reservoirs,2017,29(5):148-154.
[30] CHEN Meng,DAI Jiacai,LIU Xiangjun,et al. Effect of displacement rates on fluid distributions and dynamics during water flooding in tight oil sandstone cores from nuclear magnetic resonance(NMR)[J]. Journal of Petroleum Science and Engineering,2020,184:106588.
[31] 张皓宇,李茂,康永梅,等. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏,2021,33(6):177-188. ZHANG Haoyu,LI Mao,KANG Yongmei,et al. Reservoir architecture and fine characterization of remaining oil of Chang 3 reservoir in Zhenbei oilfield,Ordos Basin[J]. Lithologic Reservoirs,2021,33(6):177-188.
[1] 陈鹏, 武小宁, 林煜, 钟厚财, 张洁, 黄友华, 岳纹, 冷平. 准噶尔盆地车排子凸起石炭系构造特征与油气富集规律[J]. 岩性油气藏, 2025, 37(1): 68-77.
[2] 桂诗琦, 罗群, 贺小标, 王千军, 王仕琛, 汪亮. 准噶尔盆地车排子凸起石炭系油气成藏主控因素及成藏模式[J]. 岩性油气藏, 2025, 37(1): 126-136.
[3] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[4] 张培军, 谢明贤, 罗敏, 张良杰, 陈仁金, 张文起, 乐幸福, 雷明. 巨厚膏盐岩形变机制解析及其对油气成藏的影响——以阿姆河右岸东部阿盖雷地区侏罗系为例[J]. 岩性油气藏, 2024, 36(6): 36-44.
[5] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[6] 张天择, 王红军, 张良杰, 张文起, 谢明贤, 雷明, 郭强, 张雪锐. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65.
[7] 苟红光, 林潼, 房强, 张华, 李山, 程祎, 尤帆. 吐哈盆地胜北洼陷中下侏罗统水西沟群天文旋回地层划分[J]. 岩性油气藏, 2024, 36(6): 89-97.
[8] 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109.
[9] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[10] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[11] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[12] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[13] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[14] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[15] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!