岩性油气藏 ›› 2025, Vol. 37 ›› Issue (3): 194–200.doi: 10.12108/yxyqc.20250318

• 石油工程与油气田开发 • 上一篇    

非均质储层致密气藏压裂井复杂缝多井干扰数值试井模型

徐有杰1,2, 任宗孝1, 向祖平3, 樊晓辉4, 于梦男5   

  1. 1. 西安石油大学 陕西省油气井及储层渗流与岩石力学重点实验室, 西安 710065;
    2. 重庆科技大学重庆非常规油气开发研究院, 重庆 401331;
    3. 重庆科技大学 石油与天然气工程学院, 重庆 401331;
    4. 中国石油长庆油田公司 勘探开发研究院, 西安 710018;
    5. 中国石油辽河油田公司 勘探开发研究院, 辽宁 盘锦, 124000
  • 收稿日期:2024-03-04 修回日期:2024-06-24 发布日期:2025-05-10
  • 第一作者:徐有杰(1990—),男,博士,讲师,主要从事渗流力学及试井分析方面的教学与研究工作。地址:(401331)重庆市沙坪坝区大学城东路20号。Email:xuyoujie920309@163.com。
  • 通信作者: 任宗孝(1989—),男,博士,副教授,主要从事油气田数值模拟及采油气工程方面的教学与研究工作。Email:zxren@xsyu.edu.cn。
  • 基金资助:
    重庆科技大学科研资助项目“基于边界元法的不规则边界致密气压裂井复杂裂缝渗流模型研究”(编号:ckrc 20231215)、重庆市科技局面上项目“陆相页岩凝析气试井反演与产能预测模型研究”(编号:CSTB2024NSCQ-MSX0218)及陕西省油气井及储层渗流与岩石力学重点实验室开放基金“基于数值试井的致密含水气藏压裂井多井干扰复杂缝网智能参数反演”(编号:WSFRM20240603002)联合资助。

Numerical well testing model of fractured well with complex fractures multi-well interference in heterogeneous tight gas reservoirs

XU Youjie1,2, REN Zongxiao1, XIANG Zuping3, FAN Xiaohui4, YU Mengnan5   

  1. 1. The key laboratory of well stability and fluid & rock mechanics in Oil and gas reservoir of Shaanxi Province, Xi'an Shiyou University, xi'an 710065, China;
    2. Unconventional Oil and Gas Development Research Institute, Chongqing University of Science and Technology, Chongqing 401331, China;
    3. School of Petroleum engineering, Chongqing University of Science and Technology, Chongqing 401331, China;
    4. Exploration and Development Research Institute, China Petroleum Changqing Oilfield Branch, Xi'an 710018, China;
    5. Exploration and Development Research Institute, China Petroleum Liaohe Oilfield Branchm, Panjing 124000, Liaoning, China
  • Received:2024-03-04 Revised:2024-06-24 Published:2025-05-10

摘要: 基于嵌入式离散裂缝,在考虑拟启动压力梯度影响的基础上,建立非均质致密气藏压裂井复杂裂缝多井干扰数值试井数学模型,通过修正考虑拟启动压力梯度影响的传导率计算公式,改进了MRST数值模拟求解的算法。研究结果表明:①基于MRST模拟器进行模型计算,简化模型与商业软件对比结果验证了模型的准确性,拟启动压力系数越大,压降及压降导数曲线上翘幅度越大。②邻井生产方式(定产或定压)主要影响井底压降双对数曲线中后期特征,邻井定产生产使得测试井边界反映特征提前表征,邻井定压生产使得测试井晚期双对数曲线表现出先上翘后下掉特征。③邻井裂缝参数及离散裂缝对测试井井底压力曲线影响较小,测试井诱导缝导流能力使得双线性流阶段压降导数曲线表现出明显的下凹。④测试井所在区域渗透率不变的情况下,邻井所在区域渗透率越高,测试井双对数晚期阶段干扰开始的时间越早。该研究成果对致密气藏压裂井井间干扰试井分析提供理论基础。

关键词: 非均质致密气藏, 拟启动压力梯度, 压裂井, 井间干扰, 数值试井, 非线性渗流, MRST数值模拟

Abstract: Based on Embedded discrete crack,a numerical well testing mathematical model of complex fractures and multi well interference in heterogeneous tight gas reservoirs is established,which considers the influence of the threshold pressure gradient to the permeability calculation formula. It improved the algorithm for numerical simulation based on the Multiphase Reservoir Simulator(MRST). The results show that:(1)Based on the MRST simulator for model calculation,the accuracy of the simplified model was verified by comparing the result with commercial software. The larger the threshold pressure gradient coefficient,the greater the upward curve of the pressure drop and pressure drop derivative curve.(2)The production type of adjacent wells(constant rate or constant pressure)mainly affects the mid to late stage characteristics of the wellbore pressure drop log-log curve. The constant rate production of adjacent wells leads the boundary reflection characteristics appears in advance, while the constant pressure production of adjacent wells causes the late-stage log-log curve of the test well to show an upward trend followed by a downward trend.(3)The influence of adjacent well fracture parameters and discrete fractures on the wellbore pressure drop curve of the test well is relatively small. The induced fracture conductivity of the test well shows a significant depression of bilinear flow stage wellbore pressure drop derivative curves.(4)When the region permeability of the test well keep constant,the higher the permeability of the adjacent well is,the earlier the interference appears during late stage. The research results give a theoretical foundation for the analysis of multiple well interference well test of fractured wells in tight gas reservoirs.

Key words: heterogeneous tight gas reservoir, pseudo threshold pressure gradient, fractured well, inter-well interference, numerical well testing, nonlinear seepage, numerical simulation based on MRST

中图分类号: 

  • TE312
[1] 贾爱林,位云生,郭智,等. 中国致密砂岩气开发现状与前景展望[J]. 天然气工业,2022,42(1):83-92. JIA Ailing,WEI Yunsheng,GUO Zhi,et al. Development status and prospect of tight sandstone gas in China[J]. Natural Gas Industry,2022,42(1):83-92.
[2] 高计县,孙文举,吴鹏,等. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏. 2021,33(1):121-130.GAO Jixian,SUN Wenju,WU Peng,et al. Accumulation characteristics of Upper Paleozoic tight sandstone in Shenfu block, northeastern margin of Ordos Basin[J]. Lithologic Reservoirs, 2021,33(1):121-130.
[3] 唐大海,谭秀成,王小娟,等. 四川盆地须家河组致密气藏成藏要素及有利区带评价[J]. 特种油气藏,2020,27(3):40-46. TANG Dahai,TAN Xiucheng,WANG Xiaojuan,et al. Tight gas accumulation elements and favorable zone evaluation of Xujiahe Formation in Sichuan Basin[J]. Special Oil & Gas Reservoirs,2020,27(3):40-46.
[4] 王小娟,陈双玲,谢继容,等. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏,2024,36(1):78-87. WANG Xiaojuan,CEHN Shuangling,XIE Jirong,et al. Accumulation characteristics and main controlling factors of tight sandstone of Jurassic Shaximiao Formation in southwestern Sichuan Basin[J]. Lithologic Reservoirs,2024,36(1):78-87.
[5] ARTUN E,KULGA B. Selection of candidate wells for refracturing in tight gas sand reservoirs using fuzzy inference[J]. Petroleum Exploration and Development,2020,47(2):383-389.
[6] 崔静,高东伟,毕文韬,等. 页岩气井重复压裂选井评价模型研究及应用[J]. 岩性油气藏,2018,30(6):145-150. CUI Jing,GAO Dongwei,BI Wentao,et al. Refracturing selection evaluation model for shale gas wells and its application[J]. Lithologic Reservoirs,2018,30(6):145-150.
[7] 姜瑞忠,李林凯,彭元怀,等. 基于低速非线性渗流新模型的垂直压裂井产能计算[J]. 油气地质与采收率,2013,20(1):92-95. JIANG Ruizhong,LI Linkai,PENG Yuanhuai,et al. Vertical fracture well productivity analysis based on low velocity nonlinear new model[J]. Petroleum Geology and Recovery Efficiency, 2013,20(1):92-95.
[8] CHEN Zhiming,LIAO Xinwei,YU Wei,et al. Pressure transient behaviors of wells in fractured reservoirs with natural-and hydraulicfracture networks[J]. SPE Journal,2019,24(1):375-394.
[9] JIA Pin,CHENG Lingsong,CLARKSON C. Flow behavior analysis of two-phase flowback and early-time production from hydraulically-fractured shale gas wells using a hybrid numerical/analytical model[J]. International Journal of Coal Geology, 2017,182:14-31.
[10] ZENG Jie,WANG Xiangzeng,GUO Jianchun,et al. Composite linear flow model for multi-fractured horizontal wells in heterogeneous shale reservoir[J]. Journal of Natural Gas Science and Engineering,2017,38:527-548.
[11] 徐有杰,刘启国,王瑞,等. 复合油藏压裂水平井复杂裂缝分布压力动态特征[J]. 岩性油气藏,2019,31(5):161-168. XU Youjie,LIU Qiguo,WANG Rui,et al. Pressure transient of fractured horizontal well with complex fracture distribution in composite reservoir[J]. Lithologic Reservoirs,2019,31(5):161-168.
[12] XU Jianchun,CHEN Bailian,SUN Baojiang,et al. Flow behavior of hydraulic fractured tight formations considering Pre-Darcy flow using EDFM[J]. Fuel,2019,241:1145-1163.
[13] WANG Yuhang,SHAHVALI M. Discrete fracture modeling using Centroidal Voronoi grid for simulation of shale gas plays with coupled nonlinear physics[J]. Fuel,2016,163:65-73.
[14] LIU Hui,ZHAO Xiaoliang,TANG Xuefeng,et al. A Discrete fracture-matrix model for pressure transient analysis in multistage fractured horizontal wells with discretely distributed natural fractures[J]. Journal of Petroleum Science and Engineering, 2020,192:107275.
[15] 陈志明,张绍琦,周彪,等. 考虑离散裂缝的非均质裂缝性气藏数值试井新模型[J]. 天然气工业,2023,43(2):77-86. CHEN Zhiming,ZHANG Shaoqi,ZHOU Biao,et al. A new numerical well testing model considering discrete fractures for heterogeneous fractured gas reservoirs[J]. Natural Gas Industry,2023,43(2):77-86.
[16] 钟会影,沈文霞,藏秋缘,等. 基于PEBI网格的考虑诱导裂缝的聚合物驱压力动态研究[J]. 岩性油气藏,2022,34(3):164-170. ZHONG Huiying,SHEN Wenxia,ZANG Qiuyuan,et al. Pressure transient of polymer flooding considering induced fractures based on PEBI grid[J]. Lithologic Reservoirs,2022,34(3):164-170.
[17] 孙贺东,欧阳伟平,朱松柏,等. 多尺度离散裂缝性致密砂岩气藏数值试井新方法:以塔里木盆地克拉苏气田为例[J]. 天然气工业,2022,42(7):55-64. SUN Hedong,OUYANG Weiping,ZHU Songbo,et al. A new numerical well test method of multi-scale discrete fractured tight sandstone gas reservoirs and its application in the Kelasu Gas Field of the Tarim Basin[J]. Natural Gas Industry,2022, 42(7):55-64.
[18] 李继庆,刘曰武,黄灿,等. 页岩气水平井试井模型及井间干扰特征[J]. 岩性油气藏,2018,30(6):138-144. LI Jiqing,LIU Yuewu,HUANG Can,et al. Multi-stage fracturing horizontal well interference test model and its application[J]. Lithologic Reservoirs,2018,30(6):138-144.
[19] LI Daolun,ZHA Wenshu,LIU Shufeng,et al. Pressure transient analysis of low permeability reservoir with pseudo threshold pressure gradient[J]. Journal of Petroleum Science and Engineering,2016,147:308-316.
[20] 闫正和,郭康良,李彦平,等. 海上干扰试井数值模拟设计及方案优化[J]. 岩性油气藏,2015,27(2):98-102. YAN Zhenghe,GUO Kangliang,LI Yanping,et al. Interference well test with numerical simulation design and program optimization at sea[J]. Lithologic Reservoirs,2015,27(2):98-102.
[21] GUPTA I,RAI C,DEVEGOWDA D,et al. Fracture hits in unconventional reservoirs:A critical review[J]. SPE Journal,2021, 26(1):412-434.
[22] CHEN Zhiming,XIE Jianyong,LIAO Xinwei,et al. A semianalytical model for complex fracture geometries with fracture hits[R]. Beijing,presented at International Petroleum Technology Conference,2019.
[23] XIAO Cong,DAI Yu,TIAN Leng,et al. A semianalytical methodology for pressure-transient analysis of multiwell-padproduction scheme in shale gas reservoirs,part 1:New insights into flow regimes and multiwell interference[J]. SPE Journal, 2017,23(3):885-905.
[24] 姜瑞忠,高岳,崔永正,等. 基于应力敏感效应和启动压力梯度的双重介质低渗油藏邻井干扰试井模型[J]. 东北石油大学学报,2020,44(1):112-120. JIANG Ruizhong,GAO Yue,CUI Yongzheng,et al. Well test model of interference from adjacent well in dual medium low permeability reservoir considering stress sensitive effect and threshold pressure gradient[J]. Journal of Northeast Petroleum University,2020,44(1):112-120.
[25] 李传亮. 再谈启动压力梯度[J]. 岩性油气藏,2013,25(4):1-5. LI Chuanliang. Another discussion on starting pressure gradient[J]. Lithologic Reservoirs,2013,25(4):1-5.
[26] 姜瑞忠,李林凯,徐建春,等. 低渗透油藏非线性渗流新模型及试井分析[J]. 石油学报,2012,33(2):264-268. JIANG Ruizhong,LI Linkai,XU Jianchun,et al. A nonlinear mathematical model for low permeability reservoirs and weltesting analysis[J]. Acta Petrolei Sinica,2012,33(2):264-268.
[27] LI Linkai,Guo Xiao,Zhou Ming,et al. Numerical modeling of fluid flow in tight oil reservoirs considering complex fracturing networks and Pre-Darcy flow[J]. Journal of Petroleum Science and Engineering,2021,207:109050.
[1] 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179.
[2] 曾旭, 卞从胜, 沈瑞, 周可佳, 刘伟, 周素彦, 汪晓鸾. 渤海湾盆地歧口凹陷古近系沙三段页岩油储层非线性渗流特征[J]. 岩性油气藏, 2023, 35(3): 40-50.
[3] 钟会影, 沈文霞, 藏秋缘, 许严芮. 基于PEBI网格的考虑诱导裂缝的聚合物驱压力动态研究[J]. 岩性油气藏, 2022, 34(3): 164-170.
[4] 姜瑞忠, 张福蕾, 崔永正, 潘红, 张旭, 张春光, 沈泽阳. 考虑应力敏感和复杂运移的页岩气藏压力动态分析[J]. 岩性油气藏, 2019, 31(4): 149-156.
[5] 闫 霞,李小军,赵 辉,张 伟,王泽斌,毛得雷. 煤层气井井间干扰研究及应用[J]. 岩性油气藏, 2015, 27(2): 126-132.
[6] 熊健,刘向君,陈朕. 低渗气藏压裂井动态产能预测模型研究[J]. 岩性油气藏, 2013, 25(2): 82-85.
[7] 张宇煜,汪伟英,周江江. 注水压力对低渗透储层渗流特征的影响[J]. 岩性油气藏, 2010, 22(2): 120-122.
[8] 欧阳传湘,涂志勇,付蓉. 灰色综合评判法优选压裂井[J]. 岩性油气藏, 2009, 21(3): 101-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!