岩性油气藏 ›› 2022, Vol. 34 ›› Issue (3): 164–170.doi: 10.12108/yxyqc.20220315

• 石油工程与油气田开发 • 上一篇    

基于PEBI网格的考虑诱导裂缝的聚合物驱压力动态研究

钟会影1, 沈文霞1, 藏秋缘2, 许严芮1   

  1. 1. 东北石油大学 提高油气采收率教育部重点实验室, 黑龙江 大庆 163318;
    2. 中国石油大庆油田分公司 井下作业分公司, 黑龙江 大庆 163311
  • 收稿日期:2021-08-12 修回日期:2021-12-19 出版日期:2022-05-01 发布日期:2022-05-12
  • 第一作者:钟会影(1981-),女,教授,博士生导师,主要从事孔隙尺度微观渗流机理及油藏数值模拟等方面的教学与研究工作。地址:(163318)黑龙江省大庆市高新技术产业开发区学府街99号。Email:zhhy987@126.com。
  • 基金资助:
    中国博士后科学基金“考虑诱导裂缝闭合的黏弹性聚合物驱压力降落特征研究”(编号:2019M661250)和黑龙江省博士后经费项目“二类油层黏弹性聚合物驱注入井压力动态解释方法研究”(编号:LBH-Z19050)联合资助

Pressure transient of polymer flooding considering induced fractures based on PEBI grid

ZHONG Huiying1, SHEN Wenxia1, ZANG Qiuyuan2, XU Yanrui1   

  1. 1. Key Laboratory of Enhanced Oil and Gas Recovery of Ministry of Education, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. Downhole Service Company, PetroChina Daqing Oilfield Company, Daqing 163311, Heilongjiang, China
  • Received:2021-08-12 Revised:2021-12-19 Online:2022-05-01 Published:2022-05-12

摘要: 通过PEBI网格变尺度剖分方法,考虑注聚井在注入过程中会产生诱导裂缝的情况,综合聚合物溶液黏浓关系、剪切效应、渗透率下降以及吸附机理,建立了考虑诱导裂缝的聚合物驱垂直裂缝井数学模型。采用有限体积法对数学模型进行离散,从而得到井底压力数值解,进而绘制压力及压力导数双对数曲线并对其影响因素进行分析。研究结果表明:①聚合物驱垂直裂缝井试井曲线可以分为5个流动阶段:纯井筒储集阶段、双线性流阶段、线性流阶段、椭圆流阶段与径向流阶段;聚合物浓度主要影响试井曲线后期阶段,浓度越大,双线性流及非牛顿径向流阶段曲线越靠上。②诱导裂缝半长越小,压力和压力导数曲线上翘越明显;通过与水驱诱导裂缝闭合压力动态曲线的对比,基于混合PEBI网格考虑诱导裂缝聚合物驱数值计算方法能够准确描述诱导裂缝闭合后的压力动态。③当裂缝闭合速度因子(delpat)为0时,裂缝瞬间闭合,压力发生突变,在压力导数图中表现为一个明显峰值;delpat越大,裂缝闭合速度越慢,压力导数的峰值越高,曲线越靠右。

关键词: PEBI网格, 聚合物驱, 诱导裂缝, 数值试井, 裂缝闭合, 压力动态

Abstract: Based on PEBI grid method,by considering the situation that the polymer injection well will produce induced fractures during the injection process,and taking into account the rheology of polymer solution,shear thinning,permeability reduction and adsorption mechanism,a mathematical model of polymer flooding considering vertical induced fractures was established. The finite volume method was used to discrete the mathematical model, and then the numerical solution of bottom hole pressure was obtained. The double logarithmic curve of pressure and pressure derivative was plotted and the influencing factors were analyzed. The results show that: (1)The well test curve of polymer flooding for vertically fractured well can be divided into five flow stages:pure wellbore storage stage,bilinear flow stage,linear flow stage,elliptical flow stage and radial flow stage. Polymer concentration mainly affects the later stage of well test curve. The higher the concentration,the more upward the curves at the bilinear flow stage and non-Newtonian radial flow stage.(2)The shorter the half-length of induced fractures,the more obvious the upward curve of pressure and pressure derivative. Compared with the pressure dynamic curves considering induced fracture closure in water drive,the numerical calculation method of polymer flooding considering induced fracture based on hybrid PEBI grid can accurately describe the pressure transient after induced fracture closure.(3)When the value of the fracture closure velocity factor(delpat)is 0,the fracture closes instantaneously and the pressure change suddenly,it is shown as an obvious peak in the pressure derivative diagram. The larger the delpat is,the slower the closure velocity is,the lower the derivative peak is,and the more the curve shifts to the right.

Key words: PEBI grid, polymer flooding, induced fracture, numerical well test, fracture closure, pressure transient

中图分类号: 

  • TE319
[1] 金亚杰.国外聚合物驱油技术研究及应用现状[J].非常规油气, 2017, 4(1):116-122. JIN Yajie. Progress in research and application of polymer flooding technology abroad[J]. Journal of Unconventional Oil and Gas, 2017, 4(1):116-122.
[2] 孙龙德,伍晓林,周万富,等.大庆油田化学驱提高采收率技术[J].石油勘探与开发, 2018, 45(4):636-645. SUN Longde, WU Xiaolin, ZHOU Wanfu, et al. Technologies of enhancing oil recovery by chemical flooding in Daqing Oilfield, NW China[J]. Petroleum Exploration and Development, 2018, 45(4):636-645.
[3] 廖广志,王强,王红庄,等.化学驱开发现状与前景展望[J].石油学报, 2017, 38(2):196-207. LIAO Guangzhi,WANG Qiang,WANG Hongzhuang,et al. Chemical flooding development status and prospect[J]. Acta Petrolei Sinica, 2017, 38(2):196-207.
[4] 韩培慧,闫坤,曹瑞波,等.聚驱后油层提高采收率驱油方法[J].岩性油气藏, 2019, 31(2):143-150. HAN Peihui, YAN Kun, CAO Ruibo, et al. Oil displacement methods for enhanced oil recovery after polymer flooding[J]. Lithologic Reservoirs, 2019, 31(2):143-150.
[5] ZHU Youyi. Current developments and remaining challenges of chemical flooding EOR techniques in China[R]. SPE 174566, 2015.
[6] 范天一,宋新民,吴淑红,等.低渗透油藏水驱动态裂缝数学模型及数值模拟[J].石油勘探与开发, 2015, 42(4):496-501. FAN Tianyi, SONG Xinmin, WU Shuhong, et al. A mathematical model and numerical simulation of waterflood induced dynamic fractures of low permeability reservoirs[J]. Petroleum Exploration and Development, 2015, 42(4):496-501.
[7] HAGOORT J. Waterflood-induced hydraulic fracturing[D]. Delft:Technical University of Delft, 1981.
[8] KONING E J L. Waterflooding Under Fracturing Conditions[D]. Delft:Technical University of Delft, 1988.
[9] VAN DEN HOEK P J. Pressure transient analysis in fractured produced water injection wells[R]. SPE 77946, 2002.
[10] VAN DEN HOEK P J, AL-MASFRY R, ZWARTS D, et al. Waterflooding under dynamic induced fractures:Reservoir management and optimization of fractured waterfloods[R]. SPE 110379, 2008.
[11] 王友净,宋新民,田昌炳,等.动态裂缝是特低渗透油藏注水开发中出现的新的开发地质属性[J].石油勘探与开发, 2015, 42(2):222-228. WANG Youjing, SONG Xinmin, TIAN Changbing, et al. Dynamic fractures are an emerging new development geological attribute in water-flooding development of ultra-low permeability reservoirs[J]. Petroleum Exploration and Development, 2015, 42(2):222-228.
[12] 汪洋,程时清,于海洋,等.考虑注水诱发微裂缝属性参数变化的注水井不稳定压力分析[C].中国力学大会-2017暨庆祝中国力学学会成立60周年大会论文集, 2017:739-747. WANG Yang, CHENG Shiqing, YU Haiyang, et al. Semi-analytical modeling for water injection well in tight reservoir considering the variation of waterflood-induced fracture properties[C]. China Mechanical Assembly-Proceedings of the 60th Anniversary Conference of Chinese Society of Mechanics, 2017:739-747.
[13] 崔永正,姜瑞忠,郜益华,等.空间变导流能力压裂井CO2驱试井分析[J].岩性油气藏, 2020, 32(4):172-180. CUI Yongzheng, JIANG Ruizhong, GAO Yihua, et al. Pressure transient analysis of hydraulic fractured vertical wells with variable conductivity for CO2 flooding[J]. Lithologic Reservoirs, 2020, 32(4):172-180.
[14] 曾杨,康晓东,唐恩高,等.三层油藏水驱后转聚驱的试井解释方法[J].岩性油气藏, 2018, 30(5):146-153. ZENG Yang, KANG Xiaodong, TANG Engao, et al. Well test analysis method for polymer flooding after water flooding in triplelayer reservoir[J]. Lithologic Reservoirs, 2018, 30(5):146-153.
[15] 査文舒.基于PEBI网格的油藏数值计算及其实现[D].合肥:中国科学技术大学, 2009. ZHA Wenshu. Numerical reservoir calculation on PEBI grids and implementation[D]. Hefei:University of Science and Technology of China, 2009.
[16] 贾智淳,闫术,董晓芳,等.剪切变稀作用对聚驱试井分析影响的数值研究[J].西南石油大学学报(自然科学版), 2016, 38(5):107-114. JIA Zhichun, YAN Shu, DONG Xiaofang, et al. Numerical study on the impact of shear thinning behavior in well test analysis for polymer flooding[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2016, 38(5):107-114.
[17] 姜瑞忠,花靖,路淇安,等.基于浓度分布的聚合物驱流度控制方法[J].长江大学学报(自然科学版), 2019, 16(9):37-42. JIANG Ruizhong, HUA Jing, LU Qi'an, et al. Method for flow control in polymer flooding based on concentration distribution[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(9):37-42.
[18] 肖伟,石成方,王凤兰,等.聚合物驱油计算理论方法[M].北京:石油工业出版社, 2004. XIAO Wei, SHI Chengfang, WANG Fenglan, et al. Theoretical method of polymer flooding[M]. Beijing:Petroleum Industry Press, 2004.
[19] YUAN Changli, DELSHAD M, WHEELER M. Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework[J]. Networks&Heterogeneous Media, 2010, 5(3):583-602.
[20] DAM D B, PATEN C J, ROMIJN R. Analysis of hydraulic fracture closure in laboratory engineering, experiments[J]. Production&Facilities, 2000, 15(3):340-349.
[21] VAN DEN HOEK P J. Dimensions and degree of containment of waterflood-induced fractures from pressure-transient analysis[J]. Reservoir Evaluation&Engineering, 2005, 8(5):377-387.
[22] 张阳,任晓娟,李展峰.覆压对致密砂岩人工闭合裂缝渗透率的影响[J].天然气勘探与开发, 2015, 38(2):56-58. ZHANG Yang, REN Xiaojuan, LI Zhanfeng. Effect of overburden on permeability of artificially closed fractures in tight sandstone[J]. Natural Gas Exploration and Development, 2015, 38(2):56-58.
[23] 徐有杰,刘启国,王庆,等.聚合物驱有限导流压裂井压力动态特征分析[J].油气井测试, 2019, 28(1):7-13. XU Youjie, LIU Qiguo, WANG Qing, et al. Pressure behaviors of polymer flooding finite-conductivity fracturing wells[J]. Well Testing, 2019, 28(1):7-13.
[1] 史文洋, 姚约东, 程时清, 顾少华, 石志良. 川西潮坪相裂缝型碳酸盐岩分层酸压井压力动态分析[J]. 岩性油气藏, 2020, 32(1): 152-160.
[2] 徐有杰, 刘启国, 王瑞, 刘义成. 复合油藏压裂水平井复杂裂缝分布压力动态特征[J]. 岩性油气藏, 2019, 31(5): 161-168.
[3] 谢晓庆. 聚合物驱注采参数无梯度优化新算法[J]. 岩性油气藏, 2019, 31(1): 139-146.
[4] 印森林, 陈恭洋, 陈玉琨, 吴小军. 砂砾岩储层孔隙结构模态控制下的剩余油分布——以克拉玛依油田七东1区克下组为例[J]. 岩性油气藏, 2018, 30(5): 91-102.
[5] 曾杨, 康晓东, 唐恩高, 未志杰, 程时清. 三层油藏水驱后转聚驱的试井解释方法[J]. 岩性油气藏, 2018, 30(5): 146-153.
[6] 周庆. 基于灰色主成分的聚合物驱操作成本预测方法[J]. 岩性油气藏, 2012, 24(5): 116-119.
[7] 章威,喻高明,胡海霞,石立华,张昕. 含水率曲线对聚合物驱特征参数的敏感性分析[J]. 岩性油气藏, 2012, 24(1): 125-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .