岩性油气藏 ›› 2017, Vol. 29 ›› Issue (3): 103–109.doi: 10.3969/j.issn.1673-8926.2017.03.012

• 技术方法 • 上一篇    下一篇

基于Contourlet变换的图像增强技术识别裂缝

赵万金, 周春雷   

  1. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2016-09-07 修回日期:2016-12-16 出版日期:2017-05-21 发布日期:2017-05-21
  • 作者简介:赵万金(1980-),男,硕士,工程师,主要从事地震储层预测方面的研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:zhao_wj@petrochina.com.cn。
  • 基金资助:
    中国石油天然气股份有限公司重大推广专项课题“地震综合裂缝预测软件系统GeoFrac1.0推广应用”(编号:2015D-1809-02)资助

Application of image enhancement technique to fracture identification based on Contourlet transform

ZHAO Wanjin, ZHOU Chunlei   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2016-09-07 Revised:2016-12-16 Online:2017-05-21 Published:2017-05-21

摘要: 由于地震叠后数据识别小断裂和裂缝带难度较大,因此,图像增强技术逐渐应用于地震处理和解释中。基于Contourlet变换的图像增强技术具有多尺度分解和多方向滤波的特点,可以很好地突出地震叠后数据中隐含的各向异性。通过地震物理模拟分析,并与其他技术相比,发现其在凸显小断裂和构造裂缝带分布方面具有明显优势。该项技术已成功应用于实际生产,在复杂构造断裂解释和裂缝型储层井位部署中发挥了重要作用。

关键词: 岩相, 辫状河三角洲, 沉积模式, 盒8 段, 苏南地区, 鄂尔多斯盆地

Abstract: It is difficult to identify small-scale faults and fracture zone by seismic post-stack data, and image enhancement technique has been applied in seismic processing and interpretation. Image enhancement technique based on Contourlet transform,which is characterized by multi-scale decomposition and multi-directional filtering, can be used to highlight the anisotropy of post-stack data. Seismic physical modeling analysis shows that compared with other techniques,image enhancement technique has obvious advantages in highlighting the distribution of small-scale faults and tectonic fracture zones. This technique has been successfully applied to practical production,which plays an important role in the interpretation of complex structural faults and well deployment in fractured reservoirs.

Key words: lithofacies, braided delta, sedimentary model, the eighth member of Shihezi Formation, sourthern Sulige, Ordos Basin

中图分类号: 

  • P631.4
[1] 王时林, 秦启荣, 苏培东, 等.川北阆中-南部地区大安寨段裂缝预测.岩性油气藏, 2011, 23(5):69-73. WANG S L, QIN Q R, SU P D, et al. Fracture prediction of Daanzhai member in Langzhong-Nanbu area, northern Sichuan. Lithologic Reservoirs, 2011, 23(5):69-73.
[2] 邵晓州, 秦启荣, 范晓丽, 等.川东北黄龙场构造飞仙关组四段底部裂缝预测研究.岩性油气藏, 2011, 23(5):96-100. SHAO X Z, QIN Q R, FAN X L, et al. Fracture prediction of the bottom of T1f4 in Huanglongchang structure, northeastern Sichuan Basin. Lithologic Reservoirs, 2011, 23(5):96-100.
[3] 周文, 尹太举, 张亚春, 等.蚂蚁追踪技术在裂缝预测中的应用——以青西油田下沟组为例. 岩性油气藏, 2015, 27(6):111-118. ZHOU W, YIN T J, ZHANG Y C, et al. Application of ant tracking technology to fracture prediction:a case study from Xiagou Formation in Qingxi Oilfield. Lithologic Reservoirs, 2015, 27(6):111-118.
[4] 冯明友, 张帆, 王兴志, 等.利用IPA技术精细识别裂缝——以柴达木盆地南翼山工区为例.地球物理学进展, 2010, 25(6):2054-2060. FENG M Y, ZHANG F, WANG X Z, et al. Delineation of fractures by 3D seismic data IPA technique:a case study in the Nanyishan area, Qaidam Basin. Progress in Geophysics, 2010, 25(6):2054-2060.
[5] 苟量, 彭真明.小波多尺度边缘检测及其在裂缝预测中的应用.石油地球物理勘探, 2005, 40(3):309-313. GOU L, PENG Z M. Multi-scale edge detection of wavelet and application in fracture prediction. Oil Geophysical Prospecting, 2005, 40(3):309-313.
[6] BONDAR I. Seismic horizon detection using image processing algorithms. Geophysical Prospecting, 1992, 40(7):785-800.
[7] HESTHAMMER J. Improving seismic data for detailed structural interpretation. The Leading Edge, 1999, 18(2):226-247.
[8] 陈凤, 李金宗, 李冬冬, 等.提高地震图像信噪比的非线性各向异性扩散算法模型.石油勘探与开发, 2004, 31(2):77-80. CHEN F, LI J Z, LI D D, et al. A model of nonlinear anisotropic diffusion for increasing signal to noise ratio of seismic image. Petroleum Exploration and Development, 2004, 31(2):77-80.
[9] 孙夕平, 杜世通, 汤磊.相干增强各向异性扩散滤波技术.石油地球物理勘探, 2004, 39(6):651-655. SUN X P, DU S T, TANG L. Coherent-enhancing anisotropic diffusion filtering technique. Oil Geophysical Prospecting, 2004, 39(6):651-655.
[10] 杨宁, 陈婷.基于多尺度数学形态学地震图象增强方法在裂缝解释中的应用.信息技术与信息化, 2016, 195(4):48-51. YANG N, CHEN T. Seismic fracture detection based on multiscale morphological seismic image enhancement method. Information Technology and Informatization, 2016, 195(4):48-51.
[11] 石双虎.基于新等效介质模型HTI介质中断裂大小、各向异性及频率之间的依赖关系.长春:吉林大学, 2007:83-100. SHI S H. Dependency relationship of fracture size, anisotropy and frequency in HTI media based on developing equivalent media model. Changchun:Jinlin University, 2007:83-100.
[12] CHAPMAN M. Frequency-dependent anisotropy due to mesoscale fractures in the presence of equant porosity. Geophysical Prospecting, 2003, 51(5):369-379.
[13] CANDÈS E J, DONOHO D L. Curvelets-a surprisingly effective nonadaptive representation for objects with edges. Nashville:Vaderbilt University Press, 1999:1-10.
[14] 张广智, 郑静静, 印兴耀.基于Curvelet变换的多尺度性识别裂缝发育带.石油地球物理勘探, 2011, 46(5):757-762. ZHANG G Z, ZHENG J J, YIN X Y. Identification technology of fracture zone and its strike based on the Curvelet transform. Oil Geophysical Prospecting, 2011, 46(5):757-762.
[15] 敬忠良, 肖刚, 李振华.图像融合——理论与应用.北京:高等教育出版社, 2007:5-6. JING Z L, XIAO G, LI Z H. Image fusion-theory and applications. Beijing:Higher Education Press, 2007:5-6.
[16] DO M N, VETTERLI M. Contourlet:a directional multiresolution image repersentation. Proc of IEEE International Conference on Image Processing, Rochester, NY, 2002:357-360.
[17] 郑静. 基于Contourlet变换的图像融合算法研究.青岛:山东科技大学, 2011:12-21. ZHENG J. Study of image fusion based on Contourlet transform. Qingdao:Shandong University of Science and Technology, 2011:12-21.
[18] DO M N, VETTERLI M. The contourlet transform:an efficient directional multiresolution image representation. IEEE Transactions on Image Processing, 2005, 14(12):2091-2105.
[19] 易文娟, 郁梅, 蒋刚毅.Contourlet:一种有效的方向多尺度变换分析方法.计算机应用研究, 2006, 26(9):18-22. YI W J, YU M, JIANG G Y. Contourlet:efficient directional and multiresolution analytic tool. Application Research of Computers, 2006, 26(9):18-22.
[1] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[2] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[3] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[4] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[5] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[6] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[7] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[8] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[9] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[10] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[11] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[12] 周新平, 邓秀芹, 李士祥, 左静, 张文选, 李涛涛, 廖永乐. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120.
[13] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[14] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
[15] 何维领, 罗顺社, 李昱东, 吴悠, 吕奇奇, 席明利. 斜坡背景下沉积物变形构造时空展布规律——以鄂尔多斯盆地镇原地区长7油层组为例[J]. 岩性油气藏, 2020, 32(6): 62-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .