岩性油气藏 ›› 2017, Vol. 29 ›› Issue (4): 1–10.doi: 10.3969/j.issn.1673-8926.2017.04.001

• 油气地质 •    下一篇

鄂尔多斯盆地延长组长8油层组砂岩中绿泥石膜的生长模式

周晓峰1,2, 丁黎3,4, 杨卫国3,4, 宋鹏3,4, 于均民1,2   

  1. 1. 中国石油大学(北京)石油工程学院, 北京 102249;
    2. 中国石油大学 (北京)石油工程教育部重点实验室, 北京 102249;
    3. 中国石油长庆油田分公司 勘探开发研究院, 西安 710018;
    4. 低渗透油气田勘探开发国家工程实验室, 西安 710018
  • 收稿日期:2016-10-10 修回日期:2016-12-06 出版日期:2017-07-21 发布日期:2017-07-21
  • 第一作者:周晓峰(1973-),男,博士,讲师,主要从事油气田地质学的教学和科研工作。地址:(102249)北京市昌平区府学路18号中国石油大学(北京)石油工程学院。Email:zhouxf@cup.edu.cn。
  • 基金资助:
    国家级矿产资源综合利用示范基地项目“长庆姬塬油田特低渗透油藏综合利用示范基地”(国土资源厅发[2011]88号文件)和国家重大科技专项“特低渗油藏有效开发技术”(编号:2011ZX05013-006)联合资助

Growth pattern of chlorite film in Chang 8 sandstone of Yanchang Formation in Ordos Basin

ZHOU Xiaofeng1,2, DING Li3,4, YANG Weiguo3,4, SONG Peng3,4, YU Junmin1,2   

  1. 1. College of Petroleum Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Key Laboratory of Petroleum Engineering, Ministry of Education, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Research Institute of Exploration and Development, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    4. National Engineering Laboratory for Exploration and Development of Low Permeability Oil and Gas Fields, Xi'an 710018, China
  • Received:2016-10-10 Revised:2016-12-06 Online:2017-07-21 Published:2017-07-21

摘要: 为了研究鄂尔多斯盆地延长组砂岩中绿泥石膜与物性的关系,利用铸体薄片和带有能谱仪的扫描电镜技术对绿泥石膜的赋存特征进行细致观察和分析,研究其成因和生长模式对物性的影响。结果表明,绿泥石膜由里层膜和外层膜组成,外层膜依据晶体大小细分为小晶体亚层膜和大晶体亚层膜。小晶体亚层膜生长于早成岩阶段B亚期,此时绿泥石结晶速度快,产生的晶体较小,晶形较差,集合体密集排列,对流体具有阻滞作用。里层膜生长在颗粒表面溶蚀产生的小孔腔中,在小晶体亚层膜的双向阻滞作用下,里层膜具有贫铁、镁而富硅质的化学组成,因生长空间狭窄致使晶体小、晶形差、集合体杂乱堆积。进入中成岩阶段,随着孔隙连通性变差和油气进入,流体流速减小,物质供应变慢,晶体结晶速度放缓,可形成稀疏的大晶体亚层膜。通过占据结晶底质,石英质碎屑颗粒表面的小晶体亚层膜阻止石英次生加大,而长石质碎屑颗粒表面的小晶体亚层膜和骨架颗粒表面的里层膜,通过阻滞颗粒溶解或消耗颗粒溶解出来的硅质流体,致使原生孔隙流体中的硅质浓度不足以生成大量的自生石英颗粒,它们共同作用抑制石英胶结,从而保护了原生粒间孔隙。

关键词: 过顶替, 裂缝导流能力, 产能模拟, 水平气井, 水力裂缝, 压裂施工

Abstract: The sandstone property is closely related to the chlorite film of Yanchang Formation in Ordos Basin. The data of cast thin slice and scanning electron microscope with energy disperse spectroscopy were used to analyze the chlorite film of Chang 8 sandstone,so as to study the growth pattern of the chlorite film and its influence on physical properties. The result shows that the chlorite film consists of inner layer film and outer layer film, and the outer layer film can be separated into small crystal sub-layer film and big crystal sub-layer film according to the grain size of crystal chlorite. The small crystal sub-layer film developed in the early diagenetic stage B, and the crystal has small size, poor shape and dense arrangement after rapid crystallization,and the chlorite film had the capacity to retard fluid exchange between the primary pore and the small cavity formed by the dissolution of the framework grain. The inner layer film developed in the small cavity and had low Fe and Mg content with high Si content under the bidirectional block of the small crystal sub-layer film, whose crystal is small in size and poor in shape and disorderly packed because of too narrow space for the growth. As the connectivity of the primary pore changed for the worse and the oil emplaced in the middle diagenetic stage, the velocity of the fluid decreased and the supply of the substance slowed down, which reduced the growth rate of chlorite. In such a process, some crystal chlorites increased in size and sparsely arranged and formed the big crystal sub-layer above the small crystal sub-layer film. The small crystal sub-layer film on the surface of quartziferous clastic particle inhibited quartz overgrowth by occupying the crystalline substrate. The small crystal sub-layer film on the surface of feldspathic clastic particle retarded the dissolution of the feldspathic clastic particle, and the inner layer film in the surface of the framework grain consumed the silicic fluid,which both led to insufficient silicic fluid to generate large amounts of authigenic quartz particles in the primary pore. The chlorite film protected the primary pore from quartz cement.

Key words: overdisplacing, fracture conductivity, productivity simulation, horizontal gas wells, hydraulic fracture, fracturing operation

中图分类号: 

  • TE122.2+3
[1] DOWEY P J, HODGSON D M, WORDEN R H. Prerequisites, processes, and prediction of chlorite grain coatings in petroleum reservoirs:a review of subsurface examples. Marine and Petroleum Geology, 2012, 32(1):63-75.
[2] MORAES M A S, DE ROS L F. Infiltrated clays in fluvial Jurassic sandstones of Reconcavo Basin,northeastern Brazil. Journal of Sedimentary Petrology, 1990, 60(6):809-819.
[3] MATLACK K S, HOUSEKNECHT D W, APPLIN K R. Emplacement of clay into sand by infiltration. Journal of Sedimentary Petrology, 1989, 59(1):77-87.
[4] JAHREN J S. Evidence of Ostwald ripening related recrystallization of diagenetic chlorites from reservoir rocks offshore Norway. Clay Minerals, 1991, 26(2):169-178.
[5] EHRENBERG S N. Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite:examples from the Norwegian Continental Shelf. AAPG Bulletin, 1993, 77(7):1260-1286.
[6] THOMSON A. Preservation of porosity in the deep Woodbine/Tuscaloosa trend, Louisiana. Transactions of the Gulf Coast Association of Geological Societies, 1979, 30(2):396-403.
[7] 柳益群, 李文厚.陕甘宁盆地东部上三叠统含油长石砂岩的成岩特点及孔隙演化.沉积学报, 1996, 14(3):87-96. LIU Y Q, LI W H. Diagenetic characteristics and porosity evolution of the oil-bearing arkoses in the Upper Triassic in the eastern Shaan-Gan-Ning Basin. Acta Sedimentologica Sinica, 1996, 14(3):87-96.
[8] 黄思静, 谢连文, 张萌, 等.中国三叠系陆相砂岩中自生绿泥石的形成机制及其与储层孔隙保存的关系.成都理工大学学报(自然科学版), 2004, 31(3):273-281. HUANG S J, XIE L W, ZHANG M, et al. Formation mechanism of authigenic chlorite and its relation to preservation of porosity in nonmarine Triassic reservoir sandstones, Ordos Basin and Sichuan Basin, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2004, 31(3):273-281.
[9] 李弘, 王芙蓉, 戴世立, 等. 绿泥石膜对储层孔隙度的影响——以鄂尔多斯盆地M油田延长组2段为例.岩性油气藏, 2008, 20(4):71-74. LI H, WANG F R, DAI S L, et al. Influence of chlorite film on reservoir porosity:a case study from the second member of Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 2008, 20(4):71-74.
[10] 张霞, 林春明, 陈召佑.鄂尔多斯盆地镇泾区块上三叠统延长组砂岩中绿泥石矿物特征. 地质学报, 2011, 85(10):1659-1671. ZHANG X, LIN C M, CHEN Z Y. Characteristics of chlorite minerals from Upper Triassic Yanchang Formation in the Zhenjing area, Ordos Basin. Acta Geologica Sinica, 2011, 85(10):1659-1671.
[11] 张金亮, 司学强, 梁杰, 等.陕甘宁盆地庆阳地区长8油层砂岩成岩作用及其对储层性质的影响. 沉积学报, 2004, 22(2):225-233. ZHANG J L, SI X Q, LIANG J, et al. Diagenesis of lacustrine deltaic sandstones and its impact on reservoir quality. Acta Sedimentologica Sinica, 2004, 22(2):225-233.
[12] 田建锋, 刘池洋, 王桂成, 等.鄂尔多斯盆地三叠系延长组砂岩的碱性溶蚀作用.地球科学——中国地质大学学报, 2011, 36(1):103-110. TIAN J F, LIU C Y, WANG G C, et al. Alkaline dissolution of sandstone in the Triassic Yanchang Formation in the Ordos Basin. Earth Science-Journal of China University of Geosciences, 2011, 36(1):103-110.
[13] 史基安, 王金鹏, 毛明陆, 等.鄂尔多斯盆地西峰油田三叠系延长组长6-8段储层砂岩成岩作用研究.沉积学报, 2003, 21(3):373-379. SHI J A, WANG J P, MAO M L, et al. Reservoir sandstone diagenesis of member 6 to 8 in Yanchang Formation(Triassic), Xifeng Oilfield, Ordos Basin. Acta Sedimentologica Sinica, 2003, 21(3):373-379.
[14] 杨巍, 陈国俊, 张铭杰, 等.鄂尔多斯盆地镇北地区长8油层组自生绿泥石对储层物性的影响.岩性油气藏, 2012, 24(3):27-32. YANG W, CHEN G J, ZHANG M J, et al. Influence of authigenic chlorite on reservoir properties of Chang 8 oil reservoir set in Zhenbei area,Ordos Basin. Lithologic Reservoirs, 2012, 24(3):27-32.
[15] 姚泾利, 王琪, 张瑞, 等.鄂尔多斯盆地华庆地区延长组长6砂岩绿泥石膜的形成机理及其环境指示意义.沉积学报, 2011, 29(1):72-79. YAO J L, WANG Q, ZHANG R, et al. Forming mechanism and their environmental implications of chlorite-coatings in Chang 6 sandstone(Upper Triassic)of Hua-Qing area, Ordos Basin. Acta Sedimentologica Sinica, 2011, 29(1):72-79.
[16] 向芳, 冯钦, 张得彦, 等.绿泥石环边的再研究——来自镇泾地区延长组砂岩的证据.成都理工大学学报(自然科学版), 2016, 43(1):59-67. XIANG F, FENG Q, ZHANG D Y, et al. Further study of chlorite rim in sandstone:evidences from Yanchang Formation in Zhenjing area, Ordos Basin, China. Journal of Chengdu University of Technology(Science and Technology Edition), 2016, 43(1):59-67.
[17] 田建锋, 陈振林, 杨友运.自生绿泥石对砂岩储层孔隙的保护机理.地质科技情报, 2008, 27(4):49-54. TIAN J F, CHEN Z L, YANG Y Y. Protection mechanism of authigenic chlorite on sandstone reservoir pores. Geological Science and Technology Information, 2008, 27(4):49-54.
[18] 段毅, 吴保祥, 张辉, 等. 鄂尔多斯盆地西峰油田原油地球化学特征及其成因. 地质学报, 2006, 80(2):301-310. DUAN Y, WU B X, ZHANG H, et al. Geochemistry and genesis of crude oils of the Xifeng oilfield in the Ordos Basin. Acta Geologica Sinica, 2006, 80(2):301-310.
[19] 侯林慧, 彭平安, 于赤灵, 等. 鄂尔多斯盆地姬塬-西峰地区原油地球化学特征及油源分析. 地球化学, 2007, 36(5):497-506. HOU L H, PENG P A, YU C L, et al. Geochemical characteristics and oil-source analysis of crude oils in Jiyuan-Xifeng Oilfield, Ordos Basin. Geochimica, 2007, 36(5):497-506.
[20] 钟大康, 周立建, 孙海涛, 等.鄂尔多斯盆地陇东地区延长组砂岩储层岩石学特征.地学前缘, 2013, 20(2):52-60. ZHONG D K, ZHOU L J, SUN H T, et al. Petrology of sandstone reservoirs in Longdong area, Ordos Basin. Earth Frontiers, 2013, 20(2):52-60.
[21] 何自新, 贺静.鄂尔多斯盆地中生界储层图册.北京:石油工业出版社, 2004:8-52. HE Z X, HE J. Atlas of Mesozoic reservoirs in Ordos Basin. Beijing:Petroleum Industry Press, 2004:8-52.
[22] 张文正, 杨华, 李剑锋, 等.论鄂尔多斯盆地长7段优质油源岩在低渗透油气成藏富集中的主导作用——强生排烃特征及机理分析.石油勘探与开发, 2006, 33(3):289-293. ZHANG W Z, YANG H, LI J F, et al. Leading effect of high class source rock of Chang 7 in Ordos Basin on enrichment of low permeability oil-gas accumulation:hydrocarbon generation and expulsion mechanism. Petroleum Exploration and Development, 2006, 33(3):289-293.
[23] 杨华, 刘显阳, 张才利, 等.鄂尔多斯盆地三叠系延长组低渗透岩性油藏主控因素及其分布规律. 岩性油气藏, 2007, 19(3):1-6. YANG H, LIU X Y, ZHANG C L, et al. The main controlling factors and distribution of low permeability lithologic reservoirs of Triassic Yanchang Formation in Ordos Basin. Lithologic Reservoirs, 2007, 19(3):1-6.
[24] 郭彦如, 刘俊榜, 杨华, 等.鄂尔多斯盆地延长组低渗透致密岩性油藏成藏机理.石油勘探与开发, 2012, 39(4):417-425. GUO Y R, LIU J B, YANG H, et al. Hydrocarbon accumulation mechanism of low permeable tight lithologic oil reservoir in the Yanchang Formation, Ordos Basin, China. Petroleum Exploration and Development, 2012, 39(4):417-425.
[25] 陈修, 曲希玉, 邱隆伟, 等.石英溶解特征及机理的水热实验研究.矿物岩石地球化学通报, 2015, 34(5):1027-1033. CHEN X, QU X Y, QIU L W, et al. Hydrothermal experiment research on characteristics and mechanisms of quartz dissolution. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 34(5):1027-1033.
[26] 李汶国, 张晓鹏, 钟玉梅.长石砂岩次生溶孔的形成机理.石油与天然气地质, 2005, 26(2):220-223. LI W G, ZHANG X P, ZHONG Y M. Formation mechanism of secondary dissolved pores in arcose. Oil and Gas Geology, 2005, 26(2):220-223.
[27] MORAD S. Mica alteration reactions in Jurassic reservoir sandstones from the Haltenbanken area,offshore Norway. Clays and Clay Minerals, 1990, 38(6):584-590.
[28] 葛云锦, 陈勇, 周瑶琪.不同成岩条件下油气充注对碳酸盐岩成岩作用的影响.中国石油大学学报(自然科学版), 2009, 33(1):18-22. GE Y J, CHEN Y, ZHOU Y Q. Effects of hydrocarbon emplacement to diagenesis of carbonatite in different conditions:evidences from synthetic oil(hydrocarbon)-bearing inclusions. Journal of China University of Petroleum(Edition of Natural Science), 2009, 33(1):18-22.
[29] 李茹, 葛云锦, 陈勇, 等.储层石英生长影响因素的实验证据. 中国石油大学学报(自然科学版), 2010, 34(2):13-18. LI R, GE Y J, CHEN Y, et al. Experimental evidence of influential factor of quartz growth in reservoir. Journal of China University of Petroleum(Edition of Natural Science), 2010, 34(2):13-18.
[30] PETTIJOHN F J, POTTER P E, SEIVER R. Sand and sandstone. New York, Heidelberg, Berlin:Springer-Verlag, 1973:383-437.
[1] 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179.
[2] 覃建华, 王建国, 李思远, 李胜, 窦智, 彭仕宓. 玛湖凹陷三叠系百口泉组致密砾岩储层水力裂缝特征及形成机制[J]. 岩性油气藏, 2023, 35(4): 29-36.
[3] 严向阳, 王腾飞, 何双喜, 申贝贝, 徐永辉, 陈林. 过量顶替液作业下压裂水平气井的产能模拟[J]. 岩性油气藏, 2017, 29(1): 140-146.
[4] 严向阳,胡永全,李 楠,申贝贝. 泥页岩地层破裂压力计算模型研究[J]. 岩性油气藏, 2015, 27(2): 109-113.
[5] 熊健,曾山,王绍平. 低渗透油藏变导流垂直裂缝井产能模型[J]. 岩性油气藏, 2013, 25(6): 122-126.
[6] 陈凤,李晓平,王子天,田敏. 非均匀污染下水平气井产能新模型[J]. 岩性油气藏, 2012, 24(1): 121-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .