岩性油气藏 ›› 2017, Vol. 29 ›› Issue (6): 8–14.doi: 10.3969/j.issn.1673-8926.2017.06.002

• 油气地质 • 上一篇    下一篇

特低渗储层不同孔隙组合类型的微观孔隙结构及渗流特征——以甘谷驿油田唐157井区长6储层为例

赵习森, 党海龙, 庞振宇, 时丕同, 曹尚, 丁磊, 白璞   

  1. 陕西延长石油(集团)有限责任公司 研究院, 西安 710075
  • 收稿日期:2017-06-28 修回日期:2017-08-10 出版日期:2017-11-21 发布日期:2017-11-21
  • 第一作者:赵习森(1964-),男,博士,教授级高级工程师,主要从事石油勘探开发方面的研究工作。地址:(710075)陕西省西安市科技二路75号延长石油研究院。Email:zxs123450@163.com
  • 通信作者: 庞振宇(1984-),男,博士,工程师,主要从事石油勘探开发方面的研究工作。Email:pangzhenyu0624@163.com
  • 基金资助:
    陕西省科技统筹创新工程计划项目"陕北致密砂岩油藏CO2驱提高采收率关键技术研究及先导试验"(编号:2014KTZB03-02)和国家科技支撑计划课题"CO2埋存与提高采收率技术"(编号:2012BAC26B03)联合资助

Microscopic pore structure and seepage characteristics of different pore assemblage types in ultra low permeability reservoir:a case of Chang 6 reservoir in Tang 157 well area,Ganguyi Oilfield

ZHAO Xisen, DANG Hailong, PANG Zhenyu, SHI Pitong, CAO Shang, DING Lei, BAI Pu   

  1. Research Institute, Shaanxi Yanchang Petroleum(Group) Co., Ltd., Xi'an 710075, China
  • Received:2017-06-28 Revised:2017-08-10 Online:2017-11-21 Published:2017-11-21

摘要: 为了有效克服特低渗储层非均质性对注水开发效果的影响,首次从孔隙组合类型的角度出发,与高压压汞、恒速压汞、核磁共振和真实砂岩水驱油等实验相结合,从宏观和微观两方面对注水开发储层特征进行精细定量表征:标定了不同孔隙组合类型的主流喉道半径和可动流体饱和度的大小,明确了不同孔隙组合类型的驱替类型及残余油的赋存状态。结果表明:溶孔-粒间孔、粒间孔型储层具有物性好,压实率、胶结率均较低和含油饱和度较高的特征,多发育(水下)分流河道中。其可动流体饱和度最高,易形成优势通道。优势通道的主流喉道半径为0.963~1.494 μm,驱替类型以指状驱替为主,为主要剩余油富集区;粒间孔-溶孔型和溶孔-微孔、微孔型储层特征依次变差,主流喉道半径分别为0.432~1.071 μm和0.364~0.411 μm,驱替类型,逐渐过渡到指状-网状、网状驱替,直至驱不动。

关键词: 火山岩储层, 主控因素, 石炭系, 西泉地区, 准噶尔盆地

Abstract: Aiming to overcome reservoir heterogeneity influence in water injection development,it is the first that high mercury injection,constant mercury injection,nuclear magnetic resonance have been applied to make an accurate quantification of reservoir characteristics in the stage of water injection from the angle of pore combination. In this paper main current throat radius and moveable fluid saturation have been defined for the sake of understanding the features of water flooding and residual oil for different pore assembly types. Dissolved/intergranular pores developing in the favorable sedimentary faces of the lowest compaction and cementation make its reservoir have the highest value of porosity,permeability,oil saturation and moveable fluid saturation,which makes the apparent apartment of oil and is the easiest to form preponderant permeable paths of 0.963-1.494 μm main current throat radius and fingering flooding results in residual oil of large area. Secondly by the sequence of intergranular-dissolved,dissolved-micro and micro pores,main current throat radius range is respectively 0.432-1.071 μm, 0.364-0.411 μm and its flooding type changes from finger-net, net to immovable flooding.

Key words: volcanic reservoirs, controlling factors, Carboniferous, Xiquan area, Junggar Basin

中图分类号: 

  • TE122.2+3
[1] 周翔, 何生, 陈召佑, 等.鄂尔多斯盆地南部延长组层序地层格架中烃源岩特征及控制因素.地球科学——中国地质大学学报, 2016, 41(6):1055-1066. ZHOU X, HE S, CHEN Z Y, et al. Characteristics and controlling factors of source rocks in Yanchang formation sequence framework, Ordos Basin. Earth Science, 2016, 41(6):1055-1066.
[2] 任大忠, 孙卫, 黄海, 等.鄂尔多斯盆地姬塬油田长6致密砂岩储层成因机理. 地球科学——中国地质大学学报, 2016, 41(10):1735-1744. REN D Z, SUN W, HUANG H, et al. Formation mechanism of Chang 6 tight sandstone reservoir in Jiyuan Oilfield, Ordos Basin. Earth Science, 2016, 41(10):1735-1744.
[3] 魏钦廉, 郑荣才, 肖玲, 等.鄂尔多斯盆地吴旗地区长6储层特征及影响因素分析. 岩性油气藏, 2007, 19(4):45-50. WEI Q L, ZHENG R C, XIAO L, et al. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin. Lithologic Reservoirs, 2007, 19(4):45-50.
[4] 杨华, 付金华. 超低渗透油藏勘探理论与技术. 北京:石油工业出版社, 2007:66-69. YANG H, FU J H. Exploration theory and technology of ultralow permeability reservoirs. Beijing:Petroleum Industry Press, 2007:66-69.
[5] 吴松涛, 邹才能, 朱如凯, 等.鄂尔多斯盆地上三叠统长7段泥页岩储集性能. 地球科学——中国地质大学学报, 2015, 40(11):1810-1823. WU S T, ZOU C N, ZHU R K, et al. Reservoir quality characterization of Upper Triassic Chang 7 shale in Ordos Basin. Earth Science, 2015, 40(11):1810-1823.
[6] 李书恒, 赵继勇, 崔攀峰, 等.超低渗透储层开发技术对策. 岩性油气藏, 2008, 20(3):128-131. LI S H, ZHAO J Y, CUI P F, et al. Strategies of development technology for ultra-low permeability reservoir. Lithologic Reservoirs, 2008, 20(3):128-131.
[7] 段威, 罗程飞, 刘建章, 等.莺歌海盆地LD区块地层超压对储层成岩作用的影响及其地质意义.地球科学——中国地质大学学报, 2015, 40(9):1517-1528. DUAN W, LUO C F, LIU J Z, et al. Effect of overpressure formation on reservoir diagenesis and its geological significance to LD block of Yingge hai Basin. Earth Science, 2015, 40(9):1517-1528.
[8] ADABI M H, ZOHDI A, GHABEISHAVI A, et al. Applications of nummulitids and other larger benthic foraminifera in depositional environment and sequence stratigraphy:an example from the Eocene deposits in Zagros Basin, SW Iran. Facies, 2008, 54(4):499-512.
[9] 张创, 孙卫, 高辉, 等.鄂尔多斯盆地华池长8储层成岩相与孔隙度演化. 地球科学——中国地质大学学报, 2014, 39(4):411-418. ZHANG C, SUN W, GAO H, et al. Reservoir diagenetic facies and porosity evolution pathways of Chang 8 formation in Huachi, Ordos Basin. Earth Science, 2014, 39(4):411-418.
[10] RANKEY E C, GUIDRY S A, REEDER S L, et al. Geomorphic and sedimentologic heterogeneity along a holocene shelf margin:caicos platform. Journal of Sedimentary Research, 2009, 79(6):440-456.
[11] 李彦山, 张占松, 张超谟, 等. 应用压汞资料对长庆地区长6段储层进行分类研究.岩性油气藏, 2009, 21(2):91-93. LI Y S, ZHANG Z S, ZHANG C M, et al. Application of mercury injection data to Chang 6 reservoirclassification in Changqing area. Lithologic Reservoirs, 2009, 21(2):91-93.
[12] 庞振宇, 孙卫, 李进步, 等.低渗透致密气藏微观孔隙结构及渗流特征研究——以苏里格气田苏48和苏120区块储层为例. 地质科技情报, 2013, 32(4):133-138. PANG Z Y, SUN W, LI J B, et al. A Study on microscopic pore structure and seepage characteristics low-permeability and tight sandstone gas reservoir:taking block Su 48-120 in Sulige gas field, as an example. Geological Science and Technology Information, 2013, 32(4):133-138.
[13] 刘义坤, 王永平, 唐慧敏, 等.毛管压力曲线和分形理论在储层分类中的应用. 岩性油气藏, 2014, 26(3):89-92. LIU Y K, WANG Y P, TANG H M, et al. Application of capillary pressure curves and fractal theory to reservoir classification. Lithologic Reservoirs, 2014, 26(3):89-92.
[14] 窦宏恩, 杨旸. 低渗透油藏流体渗流再认识. 石油勘探与开发, 2012, 39(5):633-640. DOU H E,YANG Y. Further understanding on fluid flow through multi-porous media in low permeability reservoirs. Petroleum Exploration and Development, 2012, 39(5):633-640.
[15] 时宇, 杨正明, 黄延章.低渗透储层非线性渗流模型研究.石油学报, 2009, 30(5):731-734. SHI Y, YANG Z M, HUANG Y Z. Study on non-linear seepage flow model for low-permeability reservoir. Acta Petrolei Sinica, 2009, 30(5):731-734.
[16] 何文祥, 杨亿前, 马超亚.特低渗透率储层水驱油规律实验研究.岩性油气藏, 2010, 22(4):109-111. HE W X, YANG Y Q, MA C Y. Experimental study on waterflooding in ultra-low permeability reservoirs. Lithologic Reservoirs, 2010, 22(4):109-111.
[17] 李顺明, 宋新民, 蒋有伟, 等.高尚堡油田砂质辫状河储集层构型与剩余油分布.石油勘探与开发, 2011, 38(4):23-34. LI S M, SONG X M, JIANG Y W, et al. Architecture and remaining oil distribution of the sandy braided river reservoir in the Gaoshangpu Oilfield. Petroleum Exploration and Development, 2011, 38(4):23-34.
[18] 王元基.改善水驱提高采收率技术文集.北京:石油工业出版社, 2011:9-25. WANG Y J. Collected works of improve water flooding to enhanced oil recovery. Beijing:Petroleum Industry Press, 2011:9-25.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[3] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[4] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[5] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[6] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[7] 王同川, 陈浩如, 温龙彬, 钱玉贵, 李玉琢, 文华国. 川东五百梯地区石炭系岩溶古地貌识别及储集意义[J]. 岩性油气藏, 2024, 36(4): 109-121.
[8] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[9] 李长海, 赵伦, 刘波, 赵文琪, 王淑琴, 李建新, 郑天宇, 李伟强. 滨里海盆地东缘北特鲁瓦油田石炭系碳酸盐岩储层裂缝网络连通性评价[J]. 岩性油气藏, 2024, 36(2): 113-123.
[10] 王金铎, 曾治平, 徐冰冰, 李超, 刘德志, 范婕, 李松涛, 张增宝. 准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型[J]. 岩性油气藏, 2024, 36(1): 23-31.
[11] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[12] 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68.
[13] 李二庭, 米巨磊, 张宇, 潘越扬, 迪丽达尔·肉孜, 王海静, 高秀伟. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征[J]. 岩性油气藏, 2024, 36(1): 88-97.
[14] 杨兆臣, 卢迎波, 杨果, 黄纯, 弋大琳, 贾嵩, 吴永彬, 王桂庆. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184.
[15] 王雪柯, 王震, 计智锋, 尹微, 姜仁, 侯珏, 张艺琼. 滨里海盆地东缘石炭系盐下碳酸盐岩油气藏成藏规律与勘探技术[J]. 岩性油气藏, 2023, 35(6): 54-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 石战战,贺振华,文晓涛,唐湘蓉. 一种基于EMD 和GHT 的储层识别方法[J]. 岩性油气藏, 2011, 23(3): 102 -105 .