岩性油气藏 ›› 2018, Vol. 30 ›› Issue (1): 1–18.doi: 10.3969/j.issn.1673-8926.2018.01.001

• 论坛与综述 •    下一篇

异重流成因和异重岩沉积特征

Carlos Zavala1,2, 潘树新3   

  1. 1. GCS Argentina, 布兰卡港 B8000JSZ, 阿根廷;
    2. 阿根廷国立南方大学 地质学系, 布兰卡港 B8000CPB, 阿根廷;
    3. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2017-09-18 修回日期:2017-12-18 出版日期:2018-01-21 发布日期:2018-01-21
  • 作者简介:Carlos Zavala (1964-),男,博士,教授,主要从事沉积学方面的教学和科研工作。地址:(B8000JSZ)阿根廷布宜诺斯艾利斯省布兰卡港市(Bahía Blanca),Calle 1320,Florida 1600。Email:czavala@gcsargentina.com。

Hyperpycnal flows and hyperpycnites: Origin and distinctive characteristics

Carlos Zavala1,2, PAN Shuxin3   

  1. 1. GCS Argentina, Bahía Blanca B8000 JSZ, Argentina;
    2. Geology Department, National University of the South, Bahía Blanca B8000 CPB, Argentina;
    3. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2017-09-18 Revised:2017-12-18 Online:2018-01-21 Published:2018-01-21

摘要: 河流在洪水期携带大量陆源碎屑,当其入湖或入海后,由于洪水密度大于周围水体的密度,洪水发生下沉并沿盆地底部长距离运移,形成陆源下潜流或异重流。异重流形成的相关沉积岩被统称为异重岩。异重岩通常由一个底部的反粒序单元和一个顶部的正粒序单元组成,反粒序单元反映了异重流能量的逐渐增强,正粒序反映了流体能量的逐渐减弱。异重流以3种方式搬运碎屑颗粒,即底载搬运、悬浮搬运和漂浮搬运。根据搬运方式的不同,异重岩分为3类岩相,即底载成因的B类岩相、悬载成因的S类岩相和漂浮物成因的L类岩相。异重流的沉积充填形成了河道、堤岸和朵叶体3类微相,内部岩相变化极为发育。异重岩的沉积特征虽然典型且较易识别,但是常被误认为是砂质碎屑流、滨岸相、三角洲相或河流相沉积。

关键词: 异重流, 异重岩, 浊流, 深水沉积, 内乌肯盆地, 鄂尔多斯盆地, 松辽盆地, 西伯利亚盆地

Abstract: Flooding river discharges a sediment-water mixture having a bulk density that often exceeds that of the water in the receiving water body. Consequently,when these flows enter a marine or lacustrine basin they plunge and move basinward as a land-derived underflow or hyperpycnal flow. Deposits related to hyperpycnal flows are hyperpycnites. Some fine hyperpycnites are composed of an inversely graded(waxing flow)basal unit,followed in transition by a normally graded(waning flow)unit.Three main facies families related to the three main elements that govern the movement of almost all sustained hyperpycnal discharges in marine settings:bedload,suspended load and lofting. These facies categories are here termed as B(bedload related sedimentary facies),S(suspended-load related sedimentary facies)and L(lofting related sedimentary facies). Hyperpycnites include three kinds of depositional elements:channel fill,lobes and levee deposits. Although hyperpycnites display typical and diagnostic characteristics that allow a clear recognition,these deposits are often misinterpreted in the literature as sandy debrites,shoreface,estuarine of fluvial deposits.

Key words: hyperpycnal flows, hyperpycnites, turbulent flow, deep water sedimentary, Neuquén Basin, Ordos Basin, Songliao Basin, Siberian Basin

中图分类号: 

  • TE121.3
[1] SYVITSKI J P M. Supply and flux of sediment along hydrological pathways:Research for the 21 st Century. Global and Plane-tary Change,2003,39(1/2):1-11.
[2] BATES C. Rational theory of delta formation. AAPG Bulletin, 1953,37:2119-2162.
[3] MULDER T,SYVITSKI J P M,MIGEON S,et al. Marine hyperpycnal flows:initiation,behavior and related deposits. A review:Marine and Petroleum Geology,2003,20:861-882.
[4] MULDER T,CHAPRON E. Flood deposits in continental and marine environments:Character and signi fi cance//SLATT R M,ZAVALA C,Sediment transfer from shelf to deep water-Revisiting the delivery system. AAPG Studies in Geology,2011:1-30.
[5] GALLOWAY W E. Process framework for describing the morphologic and stratigraphic evolution of deltaic depositional systems//BROUSSARD M L. Deltas,models for exploration:Houston Geological Society,Houston,Texas:1975:87-98.
[6] MULDER T,SYVITSKI J P M. Turbidity current generated at river mouths during exceptional discharges to the world oceans. Journal of Geology,1995,103(3):285-299.
[7] PARSONS J D,BUSH J,SYVITSKI J P M. Hyperpycnal flow formation with small sediment concentrations. Sedimentology, 2001,48(2):465-478.
[8] ZAVALA C,CARVAJAL J,MARCANO,et al. Sedimentological indexes:a new tool for regional studies of hyperpycnal systems. AAPG Hedberg Conference"Sediment transfer from shelf to deep water-revisiting the delivery mechanisms". Ushuaia-Patagonia,Argentina,2008.
[9] ZAVALA C,ARCURI M,GAMERO H,et al. A genetic facies tract for the analysis of sustained hyperpycnal flow deposits//SLATT R M,ZAVALA C. Sediment transfer from shelf to deep water-revisiting the delivery system. AAPG Studies in Geology, 2011,61:31-51.
[10] ZAVALA C,ARCURI M,GAMERO DÍAZ H,et al. The composite bed:a new distinctive feature of hyperpycnal deposition.2007 AAPG Annual Convention and Exhibition. Long Beach,California USA,2007.
[11] KASSEM A,IMRAN J. Simulation of turbid underflows generated by the plunging of a river. Geology,2001,29(9):655-658.
[12] ZAVALA C,ARCURI M. Intrabasinal and Extrabasinal turbidites:origin and distinctive characteristics. Sedimentary Geology,2016,337:36-54.
[13] DE ROOIJ F,DALZIEL S B. Time and space resolved measurements of deposition under turbidity currents//MCCAFFREY B,KNELLER B,PEAKALL J. Particulate gravity currents. International Association of Sedimentologists,Special Publication, 2001,31:207-215.
[14] PEAKALL J FELIX M,MCCAFFREY B,et al. Particulate gravity currents:Perspectives//MCCAFFREY B,KNELLER B,PEAKALL J. Particulate gravity currents. International Asso-ciation of Sedimentologists,Special Publication,2001,31:1-8.
[15] ZAVALA C,PONCE J,DRITTANTI D,et al. Ancient lacustrine hyperpycnites:a depositional model from a case study in the Rayoso Formation(Cretaceous)of west-central Argentina. Journal of Sedimentary Research,2006,76:41-59.
[16] MULDER T,ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology,2001,48:269-299.
[17] NAKAJIMA T. Hyperpycnites deposited 700 km away from river mouths in the Central Japan Sea. Journal of Sedimentary Research, 2006,76(1):60-73.
[18] PRIOR D B,BORNHOLD B D,WISEMAN W J,et al. Turbidity current activity in a British Columbia fjord. Science,1987,237(8240):1330-1333.
[19] JOHNSON K S,PAULL C K,BARRY J P,et al. A decadal record of underflows from a coastal river into the deep sea. Geology, 2001,29(1934):1019-1022.
[20] FARNSWORTH K L. Monterey Canyon as a conduit for sediment to the deep ocean. Moss Landing:MBARI,2000:25.
[21] BAUDIN F,DISNAR J R,MARTINEZ P,et al. Distribution of the organic matter in the channel levees systems of the Congo mud-rich deep-sea fan(West Africa):Implication for deep offshore petroleum source rocks and global carbon cycle. Marine and Petroleum Geology,2010,27:995-1010.
[22] GWIAZDA R,PAULL C K,USSLER Ⅲ W,et al. Evidence of modern fine-grained sediment accumulation in the Monterey Fan from measurements of the pesticide DDT and its metabolites. Marine Geology,2015,363:125-133.
[23] KHRIPOUNOFF A,VANGRIESHEIM A,BABONNEAU N, et al. Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth. Marine Geology,2003,194(3/4):151-158.
[24] HEEZEN B C,MENZIES R J,SCHNEIDER E D,et al. Congo submarine canyon. AAPG Bulletin,1964,48(7):1126-1149.
[25] SAVOYE B,BABONNEAU N,DENNIELOU B,et al. Geological overview of the Angola-Congo Margin,the Congo deepsea fan and its submarine valleys. Deep sea research,Part Ⅱ:Topical Studies in Oceanography,2009,56:2169-2182.
[26] KAO S J,DAI M,SELVARAJ K,et al. Cyclone-driven deepsea injection of freshwater and heat by hyperpycnal flow in the subtropics. Geophysical Research Letters,2010,37(21):389-400.
[27] MANSURBEG H,EL-GHALI M A K,MORAD S,et al. The impact of meteoric water on the diagenetic alterations in deepwater,marine siliciclastic turbidites. Journal of Geochemical Exploration,2006,89(1):254-258.
[28] ZAVALA C,ARCURI M,GAMERO H. Towards a genetic model for the analysis of hyperpycnal systems:2006 GSAAnnualMeeting, Philadelphia,PA,USA. Topical session T136:River Generated Hyperpycnal Events and Resulted Deposits in Modern and Ancient Environments,2006.
[29] ZAVALA C. Towards a genetic facies tract for the analysis of Hyperpycnal deposits:Keynote address. AAPG Hedberg Conference"Sediment transfer from shelf to deepwater-revisiting the deliverymechanisms",Ushuaia-Patagonia,Argentina,2008.
[30] MUTTI E,DAVOLI G,TINTERRI R,et al. The importance of ancient fluvio-deltaic systems dominated by catastrophic flooding in tectonically active basins:Memorie di Scienze Geologiche, Universita di Padova,1996,48(1):233-291.
[31] MANVILLE V,WHITE J D L. Incipient granular mass flows at the base of sediment-laden floods,and the roles of flow competence and flow capacity in the deposition of stratified bouldery sands. Sedimentary Geology,2003,155(1):157-173.
[32] BOUMA A. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jack-fork Group),Ouachita Mountains,Arkansas and Oklahoma.AAPG Bulletin,1997,81(3):470-472.
[33] SHANMUGAM G. Slides,slumps,debris flows and turbidity currents.STEELE J H,TUREKIAN K K,THORPE S A. Encyclopedia of Ocean Sciences.2 nd ed. Elsevier,978-0-12-374473-9 p,2008:447-467.
[34] SHANMUGAM G. Slides,slumps,debris flows,turbidity currents and bottom currents. Reference Module in Earth Systems and Environmental Sciences. Elsevier,2016:87.
[35] LI X B,CHEN Q L,LIU H Q,et al. Features of sandy debris flows of the Yanchang Formation in the Ordos Basin and its oil and gas exploration significance. Acta Geologica Sinica,2011, 85(5):1187-1202.
[36] ZOU C,WANG L,LI Y,et al. Deep-lacustrine transformation of sandy debrites into turbidites,Upper Triassic,central China. Sedimentary Geology,2012,265-266(Suppl 1):143-155.
[37] 王建民,王佳媛.鄂尔多斯盆地西南部长7深水浊积特征与储层发育.岩性油气藏,2017,29(4):11-19. WANG J M,WANG J Y. Deep-water turbidite characteristics and its reservoir development of Chang 7 oil layers in southwestern Ordos Basin. Lithologic Reservoirs,2017,29(4):11-19.
[38] MUTTI E,DAVOLI G,TINTERRI R. Flood-related gravityflow deposits in fluvial and fluvio-deltaic depositional systems and their sequence-stratigraphic implications//POSAMENTIER H W,MUTTI E,Second high-resolution sequence stratigraphy conference,Tremp,Abstract Book,1994:137-143.
[39] SALLER A,LIN R,DUNHAM J. Leaves in turbidite sands:The main source of oil and gas in the deep-water Kutei Basin, Indonesia. AAPG Bulletin,2006,90(10):1585-1608.
[40] GRIMM K A,FÖLLMI K B. Doomed pioneers:allochthonous crustacean tracemakers in anaerobic basinal strata,Oligo-Miocene San Gregorio Formation,Baja California Sur,Mexico:Palaios, 1994,9(4):313-334.
[41] SANDERS J E. Primary sedimentary structures formed by turbidity currents and related sedimentation mechanisms//MIDDLETON G V. Primary sedimentary structures and their hydrodinamic interpretation. SEPM Special Publication,1965,12:192-219.
[42] KNELLER B,BRANNEY M. Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, 1995,42(4):607-616.
[43] CAMACHO H,BUSBY C J,KNELLER B. A new depositional model for the classical turbidite locality at San Clemente State Beach,California. AAPG Bulletin,2002,86(9):1543-1560.
[44] BANERJEE I. Experimental study on the effect of deceleration on the vertical sequence of sedimentary structures in silty sediments.Journal of Sedimentary Petrology,1977,41(5):771-783.
[45] ARNOTT R W C,HAND B M. Bedforms,primary structures and grain fabric in the presence of suspended sediment rain. Journal of Sedimentary Petrology,1989,59(6):1062-1069.
[46] SUMNER E J,AMY L A,TALLING P J. Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research,2008,78:529-547.
[47] ZAVALA C,ARCURI M,BLANCO VALIENTE L. The importance of plant remains as diagnostic criteria for the recognition of ancient hyperpycnites. Revue de Paléobiologie,2012,11(6):457-469.
[48] AMY L A,KNELLER B,MCCAFFREY W D. Facies architecture of the Grès de Peïra Cava,SE France:Landward stacking patterns in ponded turbiditic basins. Journal of the Geological Society, 2007,164(1):143-162.
[49] ARCURI M,ZAVALA C. Very thick massive sandstone bodies:Origin and internal architecture. AAPG annual conference,Session 3853,Effects of active structural growth and confined basins on sandbody architecture I,Long Beach,California,2007.
[50] ARCURI M,ZAVALA C. Hyperpycnal shelfal lobes-some examples of the lotena and lajas formations,Neuquén Basin,Argentina. AAPG Hedberg conference"Sediment transfer from shelf to deepwater-revisiting the delivery mechanisms". UshuaiaPatagonia,Argentina,2008.
[51] BOUMAA H. Sedimentology of some flysch deposits,a graphic approach to facies interpretation. Elsevier Co.,2010,168,Amsterdam.
[52] SIMONS D B,RICHARDSON E V,NORDIN C F. Sedimentary structures generated by flow on alluvial channels//MIDDLETON G V. Primary sedimentary structures and their hydrodynamic interpretation. SEPM Special Publication,1965,12:34-52.
[53] HARMS J C,SOUTHARD J B,SPEARING D R,et al. Depositional environments as interpreted from primary sedimentary structures and stratification sequences.Tulsa,SEPM Short Course, No.2,1975:161.
[54] HARMS J C,SOUTHARD J B,WALKER R G. Structures and sequences in clastic rocks.Tulsa,SEPM short course notes 9, 1982:249.
[55] Southard J B. Experimental determination of bedform stability. Annual Review of Earth and Planetary Sciences,1991,19(1):423-455.
[56] MORSILLI M,POMAR L. Internal waves vs. surface storm waves:a review on the origin of hummocky cross-stratification. Terra Nova,2012,24(4):273-282.
[57] GUY H P,SIMMONS D B,RICHARDSON E. Summary of alluvial channel data from flume experiments,1956-1961,Professional papers of the U.S. Geological Survey,1966,462:96.
[58] HUNTER R E. Terminology of cross-stratified sedimentary layers and climbing-ripple structures. Journal of Sedimentary Research,1977,47(2):697-706.
[59] JOPLING A V,WALKER R G. Morphology and origin of rippledrift cross lamination,with examples of Pleistocene of Massachusetts. Journal of Sedimentary Petrology,1968,38(4):971-984.
[60] ASHLEY G M,SOUTHARD J B,BOOTHROYD J C. Deposition of climbing-ripple beds:a flume simulation. Sedimentology, 2010,29(1):67-79.
[61] JOBE Z R,LOWE D R,MORRIS W R. Climbing-ripple successions in turbidite systems:depositional environments,sedimentation rates and accumulation times. Sedimentology,2012,59(3):867-898.
[62] ZAVALA C,GAMERO H,ARCURI M. Lofting rhythmites:a diagnostic feature for the recognition of hyperpycnal deposits:2006 GSA Annual Meeting,Philadelphia,PA,USA,Topical session T136:River Generated Hyperpycnal Events and Resulted Deposits in Modern andAncient Environments,2006.
[63] ZAVALA C,BLANCO VALIENTE L,VALLEZ Y. The origin of lofting rhythmites. Lessons from thin sections. AAPG Hedberg Conference"Sediment Transfer from Shelf to Deepwater -Revisiting the Delivery Mechanisms",Ushuaia-Patagonia,Argentina,2008.
[64] PETTER A L,STEEL R J. Deepwater-Slope Channels and Hyperpycnal Flows from the Eocene of the Central Spitsbergen Basin:Predicting Basin-Floor Sands from a Shelf Edge/Upper Slope Perspective. AAPG Annual Meeting,Calgary,Alberta,Canada, 2005.
[65] LAMB M P,MYROW P M,LUKENS C,et al. Deposits from wave-influenced turbidity currents:Pennsylvanian Minturn Formation,Colorado,USA. Journal of Sedimentary Research,2008, 78(7/8):480-498.
[66] SPARKS R S J,BONNECAZE R T,HUPPERT H E,et al. Sediment-laden gravity currents with reversing buoyancy. Earth and Planetary Science Letters,1993,114(2/3):243-257.
[67] KNELLER B,BUCKEE C. The structure and fluid mechanics of turbidity currents:a review of some recent studies and their geological implications. Sedimentology,2000,47(Suppl 1):62-94.
[68] MUTTI E,SONNINO M. Compensation cycles:a diagnostic feature of turbidite sandstone lobes//VALLONI,R,COLELLA A,SONNINO,et al. Abstr. Int. Assoc. Sediment,2 nd Europe. Reg. Mtg.,Bologna,1981:120-123.
[69] HESSE R,RASHID H,KHODABAKHSH S. Fine-grained sediment lofting from meltwater-generated turbidity currents during Heinrich events. Geology,2004,23(5):449-452.
[70] HESSE R,KHODABAKHSH S. Significance of fine-grained sediment lofting from melt-water generated turbidity currents for the timing of glaciomarine sediment transport into the deep sea:Sedimentary Geology,2006,186(1/2):1-11.
[71] HOYAL D C J D,VAN WAGONER J C,ADAIR N L,et al. Sedimentation from jets:a depositional model for clastic deposits of all scales and environments:Search and Discovery Article # 80081,2003.
[72] WINKER C D. High-resolution seismic stratigraphy of a late Pleistocene submarine fan ponded by salt-withdrawal minibasins on the Gulf of Mexico continental slope. Proc. 3 rd Annual Offshore Technol. Conf.,1996,28(1):619-628.
[73] SINCLAIR H D,TOMASSO M. Depositional evolution of confined turbidite basins. Journal of Sedimentary Research,2002,72(4):451-456.
[74] TONIOLO H,LAMB M P,PARKER G. Depositional turbidity currents in diapiric minibasins on the continental slope:formulation and theory. Journal of Sedimentary Research,2006,76(5):783-797.
[75] 潘树新,刘化清,ZAVALA C,等.大型坳陷湖盆异重流成因的水道-湖底扇系统——以松辽盆地白垩系嫩江组一段为例. 石油勘探与开发,2017,44(6):860-870. PAN S X,LIU H Q,ZAVALA C,et al. Sublacustrine hyperpycnal channel-fan system in a large depression basin:a case study of Nen 1 member,Cretaceous Nenjiang Formation in the Songliao Basin,NE China. Petroleum Exploration and Development,2017, 44(6):860-870.
[1] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[2] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[3] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
[4] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[5] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[6] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[7] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[8] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[9] 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友焱, 董文彤. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏, 2021, 33(1): 1-11.
[10] 周新平, 邓秀芹, 李士祥, 左静, 张文选, 李涛涛, 廖永乐. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120.
[11] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[12] 符勇, 李忠诚, 万谱, 阙宜娟, 王振军, 吉雨, 黄礼, 罗静兰, 鲍志东. 三角洲前缘滑塌型重力流沉积特征及控制因素——以松辽盆地大安地区青一段为例[J]. 岩性油气藏, 2021, 33(1): 198-208.
[13] 曹思佳, 孙增玖, 党虎强, 曹帅, 刘冬民, 胡少华. 致密油薄砂体储层预测技术及应用实效——以松辽盆地敖南区块下白垩统泉头组为例[J]. 岩性油气藏, 2021, 33(1): 239-247.
[14] 梁志凯, 李卓, 李连霞, 姜振学, 刘冬冬, 高凤琳, 刘晓庆, 肖磊, 杨有东. 松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏, 2020, 32(6): 22-35.
[15] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .