岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 83–88.doi: 10.12108/yxyqc.20180610

• 技术方法 • 上一篇    下一篇

测井与全方位道集联合各向异性参数建模及成像

刘文卿, 王孝, 胡书华, 张涛, 金保中   

  1. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2018-03-19 修回日期:2018-09-22 出版日期:2018-11-16 发布日期:2018-11-16
  • 作者简介:刘文卿(1977-),男,博士,高级工程师,主要从事地震资料处理、速度建模与成像方面的研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:liuwq@petrochina.com.cn。
  • 基金资助:
    “十三五”国家重大科技专项“下古生界—前寒武系地球物理勘探关键评价技术研究”(编号:2016ZX05004-003)资助

Well constrained anisotropic velocity model building based on full-azimuth angle gathers and imaging

LIU Wenqing, WANG Xiao, HU Shuhua, ZHANG Tao, JIN Baozhong   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2018-03-19 Revised:2018-09-22 Online:2018-11-16 Published:2018-11-16

摘要: 对于TTI介质各向异性成像,精确的各向异性参数估算与建模至关重要。在当前计算机硬件迅速发展及宽方位地震数据采集日益普及的情况下,成像必须考虑介质的各向异性。提出了基于测井数据与全方位角道集联合的各向异性参数建模方法,该方法先采用Walk-away VSP资料及测井数据可获得井位置点的各向异性参数δ,借助全方位共反射角道集,可获得与方位有关的各向异性时差信息。再采用全方位层析对各向异性速度、各向异性参数εδ进行迭代优化,建立精确的各向异性参数模型,可有效减少各向异性参数的多解性。通过实际地震数据对此方案进行了验证,该方法在裂缝探测及地震成像方面有较好的适用性。

关键词: 全方位道集, 各向异性参数, 测井数据, 速度建模

Abstract: For TTI media anisotropic imaging, accurate anisotropy parameter model building is very important. Anisotropy must be considered in seismic imaging with the rapidly development of wide-azimuth acquisition. A set of joint model building method based on well data and full-azimuth angle gathers were proposed. First, Walkaway VSP data and well data can be used to obtain the anisotropy parameters δ volume. Full azimuth angle gathers can be used to obtain RMO information on the anisotropy. Based on well data and full-azimuth angle gathers, anisotropic parameters ε and δ iterative optimization process were established. The proposed solution was tested on field seismic data and the results showed favorable effect in fracture detection and seismic imaging which proved the applicability and effectiveness of the proposed method.

Key words: full-azimuth angle gathers, anisotropic parameters, well data, velocity model building

中图分类号: 

  • P631.4
[1] MACKAY S, ABMA R. Imaging and velocity estimation with depth-focusing analysis. Geophysics, 1992, 57(2):1608-1623.
[2] MACKAY S, ABMA R. Depth-focusing analysis using a wavefront-curvature criterion. Geophysics, 1993, 58(1):1148-1156.
[3] AL-YAHYA K. Velocity analysis by iteration profile migration. Geophysics, 1989, 54(1):718-729.
[4] MASHER C, JIN S, FOSTER D. Migration velocity analysis using common angle image gathers. SEG 71st Annual International Meeting, 2001:889-892.
[5] 刘文卿, 王西文, 刘洪, 等.盐下构造速度建模与逆时偏移成像研究及应用.地球物理学报, 2013, 56(2):612-625. LIU W Q, WANG X W, LIU H, et al. Application of velocity modeling and reverse time migration to subsalt structure. Chinese Journal Geophysics, 2013, 56(2):612-625.
[6] BIONDO B, SYMES W. Angle-domain common image gathers for migration velocity analysis by wavefield continuation imaging. Geophysics, 2004, 69(1):1283-1298.
[7] CANNING A, MALKIN A. Azimuthal AVA analysis using full azimuth 3D angle gathers. 79th SEG Exposition and Annual Meeting, Houston,2009.
[8] 陈可洋, 吴清岭, 范兴才, 等.地震波逆时偏移中不同域共成像点道集偏移噪声分析.岩性油气藏, 2014, 26(2):118-124. CHEN K Y, WU Q L, FAN X C, et al. Seismic wave reversetime migration noise analysis within different common imaging point gathers. Lithologic Reservoirs, 2014, 26(2):118-124.
[9] 王华忠, 冯波, 李辉, 等.各种速度分析与反演方法的对比研究. 岩性油气藏, 2012, 24(5):1-18. WANG H Z, FENG B, LI H, et al. Comparison among velocity analysis and inversion methods. Lithologic Reservoirs, 2012, 24(5):1-18.
[10] 陈生昌, 曹景忠, 马在田. 叠前地震数据的平面波深度偏移法.地球物理学报, 2003, 46(6):821-826. CHEN S C, CAO J Z, MA Z T. A method of plane wave depth migration for pre -stack seismic data. Chinese Journal of Geophys, 2003, 46(6):821-826.
[11] DE BRUIN C G M, WAPENAAR C P A, BERKHOUT A J. Angle-dependent reflectivity by means of prestack migration. Geophysics, 1990, 55(9):1223-1234.
[12] XU S, CHAURIS H, LAMBARE G, et al. Common angle image gather:a strategy for imaging complex media. SEG Extended Abstracts, 1998:1538-1541.
[13] XU S, CHAURIS H, LAMBARÉG, NOBLE M. Common angle migration:a strategy for imaging complex media. Geophysics, 2001, 66(6):1877-1894.
[14] PRUCHA M, BIONDI B, SYMES W. Angel-domain common image gathers by wave-equation migration. SEG Extended Abstracts, 2001:824-827.
[15] SAVA P, FOMEL S. Angle domain common image gathers by wave field continuation methods. Geophysics, 2003, 68(3):1065-1074.
[16] 陈凌, 吴如山, 王伟君.基于Gabor-Daubechies小波束叠前深度偏移的角度域共成像道集. 地球物理学报, 2004, 47(5):876-884. CHEN L, WU R S, WANG W J. Common angle image gathers obtained from Gabor-Daubechies beamlet prestack depth migration. Chinese Journal of Geophysics, 2004, 47(5):876-884.
[17] 陈生昌, 马在田, WU Rushan.波动方程角度域共成像道集.地球科学, 2007, 32(4):569-573. CHEN S C, MA Z T, WU R S. Angle domain common imaging gathers for wave equation. Earth Science, 2007, 32(4):569-573.
[18] MASMOUDI N, ALKHALIFAH T. Multi-parameters scanning in HTI media. SEG Extended Abstracts, 2014:448-452.
[19] WHITMORE N D, CRAWLEY S, ZHU C G. Dynamic angle and azimuth decomposition of RTM images. SEG Extended Abstracts, 2014:3801-3805.
[20] KOREN Z, SHENG X, AND KOSLOFF D. Target-oriented common-reflection angle migration. SEG Expanded Abstracts, 2002:1196-1199.
[21] KOREN Z, RAVVE A, KOSLOFF D. Local angle domain in seismic imaging. SEG Extended Abstracts, 2007:287.
[22] KOREN Z, RAVVE L, AND LEVY D. Sepcular-diffraction imaging from directional angel decomposition. EAGE Extended Abstracts, 2009:G045.
[23] KOREN Z, RAVVE E, RAGOZA A, et al. Full azimuth angle domain imaging. SEG Expanded Abstracts, 2009:2221-2225.
[24] KOREN Z, RAVVE L. Full-azimuth subsurface angle domain wavefield decomposition and image Part I:Directional and refection image gather. Geophysics, 2011, 76:S1-S13.
[25] BLIAS E. Interval anisotropic parameter estimation above the receiver array in walkaway and 3 D VSP data. SEG Extended Abstracts, 2010.
[26] ZHOU C G, LIU Z J, WHITMORE N D. Anisotropic model building with well control. SEG Extended Abstracts,2014:4675-4679.
[27] 边立恩, 于茜, 谷志猛, 等.低速异常带平均速度场建模方法研究.岩性油气藏, 2015, 27(3):122-126. BIAN L E, YU Q, GU Z M, et al. Research on mean velocity field modeling method for low velocity anomaly zone:a case study from Q oilfield,Bohai. Lithologic Reservoirs, 2015, 27(3):122-126.
[28] 韩令贺, 胡自多, 冯会元, 等.井震联合网格层析各向异性速度建模研究及应用.岩性油气藏, 2018, 30(4):91-97. HAN L H,HU Z D,FENG H Y,et al. Grid tomography based on well-to-seismic integration in anisotropic velocity modeling and its application. Lithologic Reservoirs, 2018, 30(4):91-97.
[29] THOMSEN L. Weak elastic anisotropy. Geophysics, 1986, 51:1954-1966.
[1] 韩令贺, 胡自多, 冯会元, 刘威, 杨哲, 王艳香. 井震联合网格层析各向异性速度建模研究及应用[J]. 岩性油气藏, 2018, 30(4): 91-97.
[2] 邓燕,郭建春,赵金洲. 综合求取地应力剖面新方法及其应用[J]. 岩性油气藏, 2011, 23(2): 124-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .