岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 76–82.doi: 10.12108/yxyqc.20180609

• 油气地质 • 上一篇    下一篇

致密砂岩储层孔隙结构分形研究与渗透率计算——以川西坳陷蓬莱镇组、沙溪庙组储层为例

邓浩阳1,2, 司马立强1,2, 吴玟3, 刘方霖4, 王馨5, 王超6, 杨国栋7   

  1. 1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500;
    2. 西南石油大学 地球科学与技术学院, 成都 610500;
    3. 中国石油西南油气田分公司 蜀南气矿, 四川 泸州 646000;
    4. 中国石油塔里木油田分公司 开发事业部, 新疆 库尔勒 841000;
    5. 中国石油西南油气田分公司 重庆气矿, 重庆 忠县 404300;
    6. 陕西延长石油(集团)有限责任公司 研究院, 西安 710000;
    7. 西安理工大学 高科学院, 西安 710109
  • 收稿日期:2018-05-07 修回日期:2018-07-18 出版日期:2018-11-16 发布日期:2018-11-16
  • 通讯作者: 司马立强(1961-),男,博士,教授,主要从事地球物理测井解释方面的研究工作。Email:smlq2000@126.com。 E-mail:smlq2000@126.com
  • 作者简介:邓浩阳(1989-),男,西南石油大学在读博士研究生,研究方向为岩石物理实验与地球物理测井解释。地址:(610500)四川省成都市新都区新都大道8号。Email:dhy_swpu@163.com
  • 基金资助:
    大型油气田及煤层气开发国家重大科技专项“四川盆地大型碳酸盐岩气田开发示范工程”(编号:2016ZX05052)资助

Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs: a case of Penglaizhen Formation and Shaximiao Formation in Western Sichuan Depression

DENG Haoyang1,2, SIMA Liqiang1,2, WU Wen3, LIU Fanglin4, WANG Xin5, WANG Chao6, YANG Guodong7   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Shunan Gas Mine, PetroChina Southwest Oil and Gas Field Company, Luzhou 646000, Sichuan, China;
    4. PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China;
    5. Chongqing Gas Mine, PetroChina Southwest Oil and Gas Field Company, Zhongxian 404300, Chongqing, China;
    6. Research Institute, Shaanxi Yanchang Petroleum(Group) Limited Liability Company, Xi'an 710000, China;
    7. School of High Technology, Xi'an University of Technology, Xi'an 710109, China
  • Received:2018-05-07 Revised:2018-07-18 Online:2018-11-16 Published:2018-11-16

摘要: 为厘清分形维数对储层物性特征的影响,并提高渗透率计算精度,通过对川西坳陷蓬莱镇组、沙溪庙组致密砂岩气藏12块岩心进行高压压汞实验;利用毛管束分形模型对进汞曲线进行分形处理,并结合物性资料,对分形维数与孔隙结构参数的关系进行研究;通过理论分析与多次试算,最终选取加权平均分形维数(Dave)、分界压力(pf)、中值半径(R50)等对渗透率进行多元非线性回归计算。结果显示:研究区储层可划分Ⅰ类、Ⅱ类、Ⅲ类、Ⅳ类共4种孔隙结构类型;大、小孔孔隙结构相对独立,分形维数与孔隙结构参数关系复杂;多元回归计算的渗透率与实测渗透率相关系数平方达0.9。多元非线性回归计算模型对于渗透率的计算具有更高的精度,为致密砂岩储层渗透率的计算提供了新思路。

关键词: 孔隙结构, 分形理论, 致密砂岩, 川西地区

Abstract: In order to clarify the influence of fractal dimension on macroscopic reservoir physical properties and improve permeability calculation accuracy, high pressure mercury injection experiments were carried out on 12 cores of tight sandstone gas reservoirs in Penglaizhen and Shaximiao Formation in Western Sichuan Depression. All the curves of mercury intrusion were processed by fractal model based on capillary tubes. Combined with poro-sity and permeability, the correlation between fractal dimension and pore structure parameters was analyzed. Through theoretical analysis and many times of trial, Dave, Pf and R50 were finally selected to calculate permeabi-lity by multiple nonlinear regression. The results show that the pore structure in tight sandstone could be divided into four types. The pore structures of big and small pores are relatively independent, and the relationships between fractal dimensions and pore structure parameters are complex. The calculated permeability by multiple nonlinear regression shows strong correlation with measured permeability, whose correlation coefficient squared is more than 0.9. The established model by multiple nonlinear regression shows more accurate in permeability calculation and it provides another thought for permeability calculation.

Key words: pore structure, fractal theory, tight sandstone, Western Sichuan Basin

中图分类号: 

  • TE122
[1] 黄静,李琦,康元欣, 等. 致密砂岩气储层微观孔隙及成岩作用特征——以川西新场地区须五段为例.岩性油气藏, 2016, 28(2):24-32. HUANG J, LI Q, KANG Y X, et al. Characteristics of micropores and diagenesis of tight sandstone reservoirs:a case study from the fifth member of Xujiahe Formation in Xinchang area, Western Sichuan Depression. Lithologic Reservoirs, 2016, 28(2):24-32.
[2] 王猛,曾明,陈鸿傲, 等. 储层致密化影响因素分析与有利成岩相带预测——以马岭油田长8油层组砂岩储层为例.岩性油气藏, 2017, 29(1):59-70. WANG M, ZENG M, CHEN H A, et al. Influencing factors of tight reservoirs and favorable diagenetic facies:a case study of Chang 8 reservoir of the Upper Triassic Yanchang Formation in Maling Oilfield, Ordos Basin. Lithologic Reservoirs, 2017, 29(1):59-70.
[3] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究——以吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2018, 30(1):140-149. LI M, WANG H, CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:a case study of Lucaogou Formation in Jimsar Sag, NW China. Lithologic Reservoirs, 2018, 30(1):140-149.
[4] 楚翠金, 夏志林, 杨志强. 延川南区块致密砂岩气测井识别与评价技术. 岩性油气藏,2017,29(2):131-138. CHU C J, XIA Z L, YANG Z Q. Logging identification and evaluation of tight sandstone gas in the southern Yanchuan block. Lithologic Reservoirs, 2017, 29(2):131-138.
[5] 张宪国, 张涛, 林承焰.基于孔隙分形特征的低渗透储层孔隙结构评价. 岩性油气藏, 2013, 25(6):40-45. ZHANG X G, ZHANG T, LIN C Y. Pore structure evaluation of low permeability reservoir based on pore fractal features. Lithologic Reservoirs, 2013, 25(6):40-45.
[6] 陈志强, 吴思源, 白蓉, 等.基于流动单元的致密砂岩气储层渗透率测井评价——以川中广安地区须家河组为例. 岩性油气藏, 2017, 29(6):76-83. CHEN Z Q, WU S Y, BAI R, et al. Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:a case from Xujiahe Formation in Guang'an area, central Sichuan Basin. Lithologic Reservoirs, 2017, 29(6):76-83.
[7] KATZ A J, THOMPSON A H. Fractal sandstone pores:implication for conductivity and pore formation. Physical Review Letters, 1985, 54(12):1325-1332.
[8] WONG P Z, HOWARD J. Surface roughening and the fractal nature of rocks. Physical Review Letters, 1986, 57(5):637-640.
[9] PFEIFER P, AVNIR D. Chemistry in noninteger dimensions between two and three. The Journal of Chemical Physics, 1983, 79(7):3558-3571.
[10] MANDELBROT B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 1967, 156(3775):636-638.
[11] 闫建平, 何旭, 耿斌, 等.基于分形理论的低渗透砂岩储层孔隙结构评价方法. 测井技术, 2017, 41(3):345-352. YAN J P, HE X, GENG B, et al. Models based on fractal theory to assess pore structure of low permeability sand reservoirs. Well Logging Technology, 2017, 41(3):345-352.
[12] 吴浩, 刘锐娥, 纪友亮, 等.致密气储层孔喉分形特征及其与渗流的关系——以鄂尔多斯盆地下石盒子组盒8段为例. 沉积学报, 2017, 35(1):151-162. WU H, LIU R E, JI Y L, et al. Fractal characteristics of porethroat of tight gas reservoirs and its relation with percolation:a case from He 8 member of the Permian Xiashihezi Formation in Ordos Basin. Acta Sedimentologica Sinica, 2017, 35(1):151-162.
[13] CLARKSON C R, FREEMAN M, HE L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel, 2012, 95(1):371-385.
[14] 任晓霞, 李爱芬, 王永政, 等.致密砂岩储层孔隙结构及其对渗流的影响——以鄂尔多斯盆地马岭油田长8储层为例. 石油与天然气地质, 2015, 36(5):774-779. REN X X, LI A F, WANG Y Z, et al. Pore structure of tight sand reservoir and its influence on percolation-Taking the Chang 8 reservoir in Maling oilfield in Ordos Bain as an example. Oil & Gas Geology, 2015, 36(5):774-779.
[15] LI A, DING W, HE J, et al. Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs:a case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province,South China. Marine & Petroleum Geology, 2016, 70:46-57.
[16] CAO T, SONG Z, WANG S, et al. Characterization of pore structure and fractal dimension of Paleozoic shales from the northeastern Sichuan Basin, China. Journal of Natural Gas Science & Engineering, 2016, 35:882-895.
[17] ZHANG Z Y, WELLER A. Fractal dimension of pore-space geometry of an Eocene sandstone formation. Geophysics, 2014, 79(6):377-387.
[18] SHAO X, PANG X, LI H, et al. Fractal analysis of pore network in tight gas sandstones using NMR method:a case study from the Ordos Basin,China. Energy & Fuels, 2017, 31(10):1-11.
[19] ZHOU L, KANG Z. Fractal characterization of pores in shales using NMR:a case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China. Journal of Natural Gas Science & Engineering, 2016, 35:860-872.
[20] 何雨丹, 毛志强, 肖立志, 等.核磁共振T2分布评价岩石孔径分布的改进方法. 地球物理学报, 2005, 48(2):373-378. HE Y D, MAO Z Q, XIAO L Z, et al. An improved method of using NMR T2 distribution to evaluate pore size distribution. Chinese Journal of Geophysics, 2005, 48(2):373-378.
[21] 何雨丹, 毛志强, 肖立志, 等.利用核磁共振T2分布构造毛管压力曲线的新方法. 吉林大学学报(地球科学版), 2005, 35(2):177-181. HE Y D, MAO Z Q, XIAO L Z, et al. A new method to obtain capillary pressure curve using NMR T2 distribution. Journal of Jilin University(Earth Science Edition), 2005, 35(2):177-181.
[22] 李艳, 范宜仁, 邓少贵, 等. 核磁共振岩心实验研究储层孔隙结构.勘探地球物理进展, 2008, 31(2):129-132. LI Y, FAN Y R, DENG S G, et al. the pore structure research of cores based on NMR experiments. Progress in Exploration Geophysics, 2008, 31(2):129-132.
[23] 国家发展和改革委员会. SY/T 5346-2005. 岩石毛管压力曲线的测定.北京:石油工业出版社, 2005:1. National Development and Reform Commission. SY/T 5346-2005. Rock capillary pressure measurement. Beijing:Petroleum Industry Press, 2005:1.
[24] 杨海, 孙卫, 明红霞, 等.分形几何在致密砂岩储层微观孔隙结构研究中的应用——以苏里格气田东南部上石盒子组盒8段为例. 石油地质与工程, 2015, 29(6):103-107. YANG H, SUN W, MING H X, et al. The application of fractal theory in the research of micro pore structure of tight sandstone:a case from He 8 member of the southeast area of Sulige Gas Field. Petroleum Geology and Engineering, 2015, 29(6):103-107.
[25] 贺承祖, 华明琪.储层孔隙结构的分形几何描述. 石油与天然气地质, 1998, 19(1):15-23. HE C Z, HUA M Q. Fractal geometry description of reservoir pore structure. Oil & Gas Geology, 1998, 19(1):15-23.
[26] 司马立强, 杨国栋, 吴丰, 等. 准噶尔盆地玛湖凹陷百口泉组致密砂砾岩孔隙分形特征及影响因素探讨.测井技术, 2016, 40(5):609-616. SIMA L Q, YANG G D, WU F,et al. Fractal feature about the pore structure and controlling factor in tight glutenite reservoir in Baikouquan formation of Mahu depression in Junggar Basin. Well Logging Technology, 2016, 40(5):609-616.
[27] 葛小波, 李吉君, 卢双舫, 等.基于分形理论的致密砂岩储层微观孔隙结构表征——以冀中坳陷致密砂岩储层为例. 岩性油气藏, 2017, 29(5):106-112. GE X B, LI J J, LU S F, et al. Fractal characteristics of tight sandstone reservoir using mercury intrusion capillary pressure:a case of tight sandstone reservoir in Jizhong Depression. Lithologic Reservoirs, 2017, 29(5):106-112.
[28] YAN J P, HE X, GENG B, et al. Nuclear magnetic resonance T2 spectrum:Multifractal characteristics and pore structure evaluation. Applied Geophysics, 2017, 14(2):205-215.
[29] YAO Y, LIU D, TANG D, et al. Fractal characterization of adsorption-pores of coals from North China:an investigation on CH 4 adsorption capacity of coals. International Journal of Coal Geology, 2008, 73(1):27-42.
[30] YU B M, LI J H. A geometry model for tortuosity of flow path in porous media. Chinese Physics Letters, 2004, 21(8):1569-1571.
[31] 郑斌, 李菊花. 基于Kozeny-Carman方程的渗透率分形模型. 天然气地球科学, 2015, 26(1):193-198. ZHENG B, LI J H. A new fractal permeability model for porous media based on kozeny-carman equation. Natural Gas Geoscience, 2015, 26(1):193-198.
[32] 白瑞婷, 李治平, 南珺祥, 等.考虑启动压力梯度的致密砂岩储层渗透率分形模型. 天然气地球科学, 2016, 27(1):142-148. BAI R T, LI Z P, NAN J X, et al. The fractal permeability model in tight sand reservoir accounts for start-up gradient. Natural Gas Geoscience, 2016, 27(1):142-148.
[33] 尹帅, 谢润成, 丁文龙, 等.常规及非常规储层岩石分形特征对渗透率的影响. 岩性油气藏, 2017, 29(4):81-90. YIN S, XIE R C, DING W L, et al. Influences of fractal characteristics of reservoir rocks on permeability. Lithologic Reservoirs, 2017, 29(4):81-90.
[34] 李留仁, 袁士义, 胡永乐.分形多孔介质渗透率与孔隙度理论关系模型. 西安石油大学学报(自然科学版), 2010, 25(3):49-51. LI L R, YUAN S Y, HU Y L. A new model for describing the relationship between the permeability and the porosity of fractal porous media. Journal of Xi'an Shiyou University(Natural Science Edition), 2010, 25(3):49-51.
[1] 张文凯, 施泽进, 田亚铭, 王勇, 胡修权, 李文杰. 川东南志留系小河坝组致密砂岩孔隙类型及成因[J]. 岩性油气藏, 2021, 33(4): 10-19.
[2] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[3] 刘桓, 苏勤, 曾华会, 孟会杰, 张小美, 雍运动. 近地表Q补偿技术在川中地区致密气勘探中的应用[J]. 岩性油气藏, 2021, 33(3): 104-112.
[4] 郭永伟, 闫方平, 王晶, 褚会丽, 杨建雷, 陈颖超, 张笑洋. 致密砂岩油藏CO2驱固相沉积规律及其储层伤害特征[J]. 岩性油气藏, 2021, 33(3): 153-161.
[5] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[6] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[7] 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69.
[8] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[9] 张艳, 高世臣, 孟婉莹, 成育红, 蒋思思. 致密砂岩储层AVO正演模拟过程中的不确定性分析[J]. 岩性油气藏, 2020, 32(6): 120-128.
[10] 张鹏, 杨巧云, 范宜仁, 张云, 张海涛. 基于Xu-White模型的致密砂岩储层含气性评价[J]. 岩性油气藏, 2020, 32(6): 138-145.
[11] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
[12] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[13] 侯科锋, 李进步, 张吉, 王龙, 田敏. 苏里格致密砂岩气藏未动用储量评价及开发对策[J]. 岩性油气藏, 2020, 32(4): 115-125.
[14] 刘俞佐, 石万忠, 刘凯, 王任, 吴睿. 鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式[J]. 岩性油气藏, 2020, 32(3): 56-67.
[15] 程辉, 王付勇, 宰芸, 周树勋. 基于高压压汞和核磁共振的致密砂岩渗透率预测[J]. 岩性油气藏, 2020, 32(3): 122-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .