岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 76–82.doi: 10.12108/yxyqc.20180609

• 油气地质 • 上一篇    下一篇

致密砂岩储层孔隙结构分形研究与渗透率计算——以川西坳陷蓬莱镇组、沙溪庙组储层为例

邓浩阳1,2, 司马立强1,2, 吴玟3, 刘方霖4, 王馨5, 王超6, 杨国栋7   

  1. 1. 油气藏地质及开发工程国家重点实验室·西南石油大学, 成都 610500;
    2. 西南石油大学 地球科学与技术学院, 成都 610500;
    3. 中国石油西南油气田分公司 蜀南气矿, 四川 泸州 646000;
    4. 中国石油塔里木油田分公司 开发事业部, 新疆 库尔勒 841000;
    5. 中国石油西南油气田分公司 重庆气矿, 重庆 忠县 404300;
    6. 陕西延长石油(集团)有限责任公司 研究院, 西安 710000;
    7. 西安理工大学 高科学院, 西安 710109
  • 收稿日期:2018-05-07 修回日期:2018-07-18 出版日期:2018-11-16 发布日期:2018-11-16
  • 第一作者:邓浩阳(1989-),男,西南石油大学在读博士研究生,研究方向为岩石物理实验与地球物理测井解释。地址:(610500)四川省成都市新都区新都大道8号。Email:dhy_swpu@163.com
  • 通信作者: 司马立强(1961-),男,博士,教授,主要从事地球物理测井解释方面的研究工作。Email:smlq2000@126.com。
  • 基金资助:
    大型油气田及煤层气开发国家重大科技专项“四川盆地大型碳酸盐岩气田开发示范工程”(编号:2016ZX05052)资助

Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs: a case of Penglaizhen Formation and Shaximiao Formation in Western Sichuan Depression

DENG Haoyang1,2, SIMA Liqiang1,2, WU Wen3, LIU Fanglin4, WANG Xin5, WANG Chao6, YANG Guodong7   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Shunan Gas Mine, PetroChina Southwest Oil and Gas Field Company, Luzhou 646000, Sichuan, China;
    4. PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China;
    5. Chongqing Gas Mine, PetroChina Southwest Oil and Gas Field Company, Zhongxian 404300, Chongqing, China;
    6. Research Institute, Shaanxi Yanchang Petroleum(Group) Limited Liability Company, Xi'an 710000, China;
    7. School of High Technology, Xi'an University of Technology, Xi'an 710109, China
  • Received:2018-05-07 Revised:2018-07-18 Online:2018-11-16 Published:2018-11-16

摘要: 为厘清分形维数对储层物性特征的影响,并提高渗透率计算精度,通过对川西坳陷蓬莱镇组、沙溪庙组致密砂岩气藏12块岩心进行高压压汞实验;利用毛管束分形模型对进汞曲线进行分形处理,并结合物性资料,对分形维数与孔隙结构参数的关系进行研究;通过理论分析与多次试算,最终选取加权平均分形维数(Dave)、分界压力(pf)、中值半径(R50)等对渗透率进行多元非线性回归计算。结果显示:研究区储层可划分Ⅰ类、Ⅱ类、Ⅲ类、Ⅳ类共4种孔隙结构类型;大、小孔孔隙结构相对独立,分形维数与孔隙结构参数关系复杂;多元回归计算的渗透率与实测渗透率相关系数平方达0.9。多元非线性回归计算模型对于渗透率的计算具有更高的精度,为致密砂岩储层渗透率的计算提供了新思路。

关键词: 孔隙结构, 分形理论, 致密砂岩, 川西地区

Abstract: In order to clarify the influence of fractal dimension on macroscopic reservoir physical properties and improve permeability calculation accuracy, high pressure mercury injection experiments were carried out on 12 cores of tight sandstone gas reservoirs in Penglaizhen and Shaximiao Formation in Western Sichuan Depression. All the curves of mercury intrusion were processed by fractal model based on capillary tubes. Combined with poro-sity and permeability, the correlation between fractal dimension and pore structure parameters was analyzed. Through theoretical analysis and many times of trial, Dave, Pf and R50 were finally selected to calculate permeabi-lity by multiple nonlinear regression. The results show that the pore structure in tight sandstone could be divided into four types. The pore structures of big and small pores are relatively independent, and the relationships between fractal dimensions and pore structure parameters are complex. The calculated permeability by multiple nonlinear regression shows strong correlation with measured permeability, whose correlation coefficient squared is more than 0.9. The established model by multiple nonlinear regression shows more accurate in permeability calculation and it provides another thought for permeability calculation.

Key words: pore structure, fractal theory, tight sandstone, Western Sichuan Basin

中图分类号: 

  • TE122
[1] 黄静,李琦,康元欣, 等. 致密砂岩气储层微观孔隙及成岩作用特征——以川西新场地区须五段为例.岩性油气藏, 2016, 28(2):24-32. HUANG J, LI Q, KANG Y X, et al. Characteristics of micropores and diagenesis of tight sandstone reservoirs:a case study from the fifth member of Xujiahe Formation in Xinchang area, Western Sichuan Depression. Lithologic Reservoirs, 2016, 28(2):24-32.
[2] 王猛,曾明,陈鸿傲, 等. 储层致密化影响因素分析与有利成岩相带预测——以马岭油田长8油层组砂岩储层为例.岩性油气藏, 2017, 29(1):59-70. WANG M, ZENG M, CHEN H A, et al. Influencing factors of tight reservoirs and favorable diagenetic facies:a case study of Chang 8 reservoir of the Upper Triassic Yanchang Formation in Maling Oilfield, Ordos Basin. Lithologic Reservoirs, 2017, 29(1):59-70.
[3] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究——以吉木萨尔凹陷芦草沟组为例. 岩性油气藏, 2018, 30(1):140-149. LI M, WANG H, CHEN M. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:a case study of Lucaogou Formation in Jimsar Sag, NW China. Lithologic Reservoirs, 2018, 30(1):140-149.
[4] 楚翠金, 夏志林, 杨志强. 延川南区块致密砂岩气测井识别与评价技术. 岩性油气藏,2017,29(2):131-138. CHU C J, XIA Z L, YANG Z Q. Logging identification and evaluation of tight sandstone gas in the southern Yanchuan block. Lithologic Reservoirs, 2017, 29(2):131-138.
[5] 张宪国, 张涛, 林承焰.基于孔隙分形特征的低渗透储层孔隙结构评价. 岩性油气藏, 2013, 25(6):40-45. ZHANG X G, ZHANG T, LIN C Y. Pore structure evaluation of low permeability reservoir based on pore fractal features. Lithologic Reservoirs, 2013, 25(6):40-45.
[6] 陈志强, 吴思源, 白蓉, 等.基于流动单元的致密砂岩气储层渗透率测井评价——以川中广安地区须家河组为例. 岩性油气藏, 2017, 29(6):76-83. CHEN Z Q, WU S Y, BAI R, et al. Logging evaluation for permeability of tight sandstone gas reservoirs based on flow unit classification:a case from Xujiahe Formation in Guang'an area, central Sichuan Basin. Lithologic Reservoirs, 2017, 29(6):76-83.
[7] KATZ A J, THOMPSON A H. Fractal sandstone pores:implication for conductivity and pore formation. Physical Review Letters, 1985, 54(12):1325-1332.
[8] WONG P Z, HOWARD J. Surface roughening and the fractal nature of rocks. Physical Review Letters, 1986, 57(5):637-640.
[9] PFEIFER P, AVNIR D. Chemistry in noninteger dimensions between two and three. The Journal of Chemical Physics, 1983, 79(7):3558-3571.
[10] MANDELBROT B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 1967, 156(3775):636-638.
[11] 闫建平, 何旭, 耿斌, 等.基于分形理论的低渗透砂岩储层孔隙结构评价方法. 测井技术, 2017, 41(3):345-352. YAN J P, HE X, GENG B, et al. Models based on fractal theory to assess pore structure of low permeability sand reservoirs. Well Logging Technology, 2017, 41(3):345-352.
[12] 吴浩, 刘锐娥, 纪友亮, 等.致密气储层孔喉分形特征及其与渗流的关系——以鄂尔多斯盆地下石盒子组盒8段为例. 沉积学报, 2017, 35(1):151-162. WU H, LIU R E, JI Y L, et al. Fractal characteristics of porethroat of tight gas reservoirs and its relation with percolation:a case from He 8 member of the Permian Xiashihezi Formation in Ordos Basin. Acta Sedimentologica Sinica, 2017, 35(1):151-162.
[13] CLARKSON C R, FREEMAN M, HE L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel, 2012, 95(1):371-385.
[14] 任晓霞, 李爱芬, 王永政, 等.致密砂岩储层孔隙结构及其对渗流的影响——以鄂尔多斯盆地马岭油田长8储层为例. 石油与天然气地质, 2015, 36(5):774-779. REN X X, LI A F, WANG Y Z, et al. Pore structure of tight sand reservoir and its influence on percolation-Taking the Chang 8 reservoir in Maling oilfield in Ordos Bain as an example. Oil & Gas Geology, 2015, 36(5):774-779.
[15] LI A, DING W, HE J, et al. Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs:a case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province,South China. Marine & Petroleum Geology, 2016, 70:46-57.
[16] CAO T, SONG Z, WANG S, et al. Characterization of pore structure and fractal dimension of Paleozoic shales from the northeastern Sichuan Basin, China. Journal of Natural Gas Science & Engineering, 2016, 35:882-895.
[17] ZHANG Z Y, WELLER A. Fractal dimension of pore-space geometry of an Eocene sandstone formation. Geophysics, 2014, 79(6):377-387.
[18] SHAO X, PANG X, LI H, et al. Fractal analysis of pore network in tight gas sandstones using NMR method:a case study from the Ordos Basin,China. Energy & Fuels, 2017, 31(10):1-11.
[19] ZHOU L, KANG Z. Fractal characterization of pores in shales using NMR:a case study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China. Journal of Natural Gas Science & Engineering, 2016, 35:860-872.
[20] 何雨丹, 毛志强, 肖立志, 等.核磁共振T2分布评价岩石孔径分布的改进方法. 地球物理学报, 2005, 48(2):373-378. HE Y D, MAO Z Q, XIAO L Z, et al. An improved method of using NMR T2 distribution to evaluate pore size distribution. Chinese Journal of Geophysics, 2005, 48(2):373-378.
[21] 何雨丹, 毛志强, 肖立志, 等.利用核磁共振T2分布构造毛管压力曲线的新方法. 吉林大学学报(地球科学版), 2005, 35(2):177-181. HE Y D, MAO Z Q, XIAO L Z, et al. A new method to obtain capillary pressure curve using NMR T2 distribution. Journal of Jilin University(Earth Science Edition), 2005, 35(2):177-181.
[22] 李艳, 范宜仁, 邓少贵, 等. 核磁共振岩心实验研究储层孔隙结构.勘探地球物理进展, 2008, 31(2):129-132. LI Y, FAN Y R, DENG S G, et al. the pore structure research of cores based on NMR experiments. Progress in Exploration Geophysics, 2008, 31(2):129-132.
[23] 国家发展和改革委员会. SY/T 5346-2005. 岩石毛管压力曲线的测定.北京:石油工业出版社, 2005:1. National Development and Reform Commission. SY/T 5346-2005. Rock capillary pressure measurement. Beijing:Petroleum Industry Press, 2005:1.
[24] 杨海, 孙卫, 明红霞, 等.分形几何在致密砂岩储层微观孔隙结构研究中的应用——以苏里格气田东南部上石盒子组盒8段为例. 石油地质与工程, 2015, 29(6):103-107. YANG H, SUN W, MING H X, et al. The application of fractal theory in the research of micro pore structure of tight sandstone:a case from He 8 member of the southeast area of Sulige Gas Field. Petroleum Geology and Engineering, 2015, 29(6):103-107.
[25] 贺承祖, 华明琪.储层孔隙结构的分形几何描述. 石油与天然气地质, 1998, 19(1):15-23. HE C Z, HUA M Q. Fractal geometry description of reservoir pore structure. Oil & Gas Geology, 1998, 19(1):15-23.
[26] 司马立强, 杨国栋, 吴丰, 等. 准噶尔盆地玛湖凹陷百口泉组致密砂砾岩孔隙分形特征及影响因素探讨.测井技术, 2016, 40(5):609-616. SIMA L Q, YANG G D, WU F,et al. Fractal feature about the pore structure and controlling factor in tight glutenite reservoir in Baikouquan formation of Mahu depression in Junggar Basin. Well Logging Technology, 2016, 40(5):609-616.
[27] 葛小波, 李吉君, 卢双舫, 等.基于分形理论的致密砂岩储层微观孔隙结构表征——以冀中坳陷致密砂岩储层为例. 岩性油气藏, 2017, 29(5):106-112. GE X B, LI J J, LU S F, et al. Fractal characteristics of tight sandstone reservoir using mercury intrusion capillary pressure:a case of tight sandstone reservoir in Jizhong Depression. Lithologic Reservoirs, 2017, 29(5):106-112.
[28] YAN J P, HE X, GENG B, et al. Nuclear magnetic resonance T2 spectrum:Multifractal characteristics and pore structure evaluation. Applied Geophysics, 2017, 14(2):205-215.
[29] YAO Y, LIU D, TANG D, et al. Fractal characterization of adsorption-pores of coals from North China:an investigation on CH 4 adsorption capacity of coals. International Journal of Coal Geology, 2008, 73(1):27-42.
[30] YU B M, LI J H. A geometry model for tortuosity of flow path in porous media. Chinese Physics Letters, 2004, 21(8):1569-1571.
[31] 郑斌, 李菊花. 基于Kozeny-Carman方程的渗透率分形模型. 天然气地球科学, 2015, 26(1):193-198. ZHENG B, LI J H. A new fractal permeability model for porous media based on kozeny-carman equation. Natural Gas Geoscience, 2015, 26(1):193-198.
[32] 白瑞婷, 李治平, 南珺祥, 等.考虑启动压力梯度的致密砂岩储层渗透率分形模型. 天然气地球科学, 2016, 27(1):142-148. BAI R T, LI Z P, NAN J X, et al. The fractal permeability model in tight sand reservoir accounts for start-up gradient. Natural Gas Geoscience, 2016, 27(1):142-148.
[33] 尹帅, 谢润成, 丁文龙, 等.常规及非常规储层岩石分形特征对渗透率的影响. 岩性油气藏, 2017, 29(4):81-90. YIN S, XIE R C, DING W L, et al. Influences of fractal characteristics of reservoir rocks on permeability. Lithologic Reservoirs, 2017, 29(4):81-90.
[34] 李留仁, 袁士义, 胡永乐.分形多孔介质渗透率与孔隙度理论关系模型. 西安石油大学学报(自然科学版), 2010, 25(3):49-51. LI L R, YUAN S Y, HU Y L. A new model for describing the relationship between the permeability and the porosity of fractal porous media. Journal of Xi'an Shiyou University(Natural Science Edition), 2010, 25(3):49-51.
[1] 孔令峰, 徐加放, 刘丁. 三塘湖盆地侏罗系西山窑组褐煤储层孔隙结构特征及脱水演化规律[J]. 岩性油气藏, 2024, 36(5): 15-24.
[2] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[3] 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121.
[4] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[5] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[6] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[7] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[8] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[9] 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177.
[10] 黄彦庆, 刘忠群, 王爱, 肖开华, 林恬, 金武军. 四川盆地元坝地区上三叠统须家河组三段致密砂岩气甜点类型与分布[J]. 岩性油气藏, 2023, 35(2): 21-30.
[11] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新近系馆陶组储层敏感性[J]. 岩性油气藏, 2023, 35(2): 159-168.
[12] 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93.
[13] 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95.
[14] 文志刚, 罗雨舒, 刘江艳, 赵春雨, 李士祥, 田伟超, 樊云鹏, 高和婷. 陇东地区三叠系长7段页岩油储层孔隙结构特征及成因机制[J]. 岩性油气藏, 2022, 34(6): 47-59.
[15] 米伟伟, 谢小飞, 曹红霞, 马强, 杜永慧, 张琼, 邓长生, 宋珈萱. 鄂尔多斯盆地东南部二叠系山2—盒8段致密砂岩储层特征及主控因素[J]. 岩性油气藏, 2022, 34(6): 101-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .