岩性油气藏 ›› 2019, Vol. 31 ›› Issue (2): 151–158.doi: 10.12108/yxyqc.20190217

• 石油工程 • 上一篇    下一篇

煤层气藏全流固耦合数学模型

未志杰1,2, 康晓东1,2, 刘玉洋1,2, 曾杨1,2   

  1. 1. 海洋石油高效开发国家重点实验室, 北京 100028;
    2. 中海油研究总院有限责任公司, 北京 100028
  • 收稿日期:2018-10-31 修回日期:2018-12-22 出版日期:2019-03-21 发布日期:2019-03-21
  • 作者简介:未志杰(1984-),男,博士,工程师,主要从事海上油气田提高采收率方面的研究工作。地址:(100028)北京市朝阳区太阳宫南街6号院中海油大厦B座710室。Email:weizj1985@163.com。
  • 基金资助:
    “十三五”国家重大科技专项“海上油田化学驱油技术”(编号:2016ZX05025-003)和中海石油(中国)有限公司重大项目“渤海油田化学驱提高采收率技术”(编号:CNOOC-KJ135ZDXM36TJ02ZY)联合资助

A fully coupled fluid flow and geomechanics model for coalbed methane reservoir

WEI Zhijie1,2, KANG Xiaodong1,2, LIU Yuyang1,2, ZENG Yang1,2   

  1. 1. State Key Laboratory of Offshore Oil Exploitation, Beijing 100028, China;
    2. CNOOC Research Institute Co., Ltd., Beijing 100028, China
  • Received:2018-10-31 Revised:2018-12-22 Online:2019-03-21 Published:2019-03-21

摘要: 为准确表征煤层复杂的地质力学效应,根据多重孔隙介质力学特征和多过程运移特点,来构建煤层气藏三孔双渗全流固耦合数学模型,并基于所研发的全隐式有限体积数值模拟器,进一步研究地质力学效应对孔渗参数和煤层气产能的影响。结果表明,有效应力效应与基质收缩作用均可影响裂缝渗透率,且作用方向相反:有效应力效应的作用强度在开发初期大于基质收缩作用,但在后期发生逆转,导致渗透率先减小后增大,最终值甚至可达初始值的数倍;随着煤岩杨氏模量增大,有效应力效应减弱,煤层气日产量增大,产气高峰出现时机提前,随着Langmuir体应变量增大,基质收缩作用增强,同样煤层气日产量增大,产气高峰出现时机提前。全流固耦合数学模型能够更准确地刻画煤层复杂流固耦合作用,这对煤层气产能预测具有重要意义。

关键词: 煤层气, 流固耦合, 地质力学效应, 基质收缩, 三孔双渗

Abstract: To more accurately characterize the complex geomechanical effects in coalbed methane reservoir,a fully coupled triple porosity dual permeability fluid flow and geomechanics model was established with consideration of poroelastic properties and multi-process transportation. The corresponding numerical solver was constructed by the fully implicit finite volumetric method,and the impacts of geomechanics on porosity and permeability and methane production were investigated. The results show that both effective stress effect and matrix shrinkage can significantly affect fracture permeability,but in opposite direction. The dominate factor is effective stress effect compared with matrix shrinkage at the early stage of primary production,but latter turns to matrix shrinkage,which makes fracture permeability firstly decreases and then rebound. The final permeability can even reach several times of its original value. As Young's modulus increases,the effective stress effect recedes,which creates bigger and earlier peak gas production. As the Langmuir strain increases,the matrix shrinkage is strengthened,which creates bigger and earlier peak gas production. The fully coupled fluid flow and geomechanics model can describe the complex fluid-structure interaction of coalbed methane reservoir more accurately,which is of great significance to the prediction of CBM productivity.

Key words: coalbed methane, coupled fluid flow, geomechanics, matrix shrinkage, triple porosity dual permeability

中图分类号: 

  • TE357
[1] CLARKSON C R, PAN Z, PALMER I D, et al. Predicting sorption-induced strain and permeability increase with depletion for coalbed-methane reservoirs. SPE Journal, 2010, 15(1):152-159.
[2] WEI Z J,ZHANG D X. A fully coupled multiphase multicomponent flow and geomechanics model for enhanced coalbedmethane recovery and CO2 storage. SPE Journal, 2013, 18(3):448-467.
[3] 孙超群, 李术才, 李华銮, 等. 煤层气藏应力-渗流流固耦合模型及SPH求解. 天然气地球科学, 2017, 28(2):305-312. SUN C Q, LI S C, LI H L, et al. Stress-seepage hydro-mechanical coupling model of coal-bed methane reservoir and its SPH analysis. Natural Gas Geoscience, 2017, 28(2):305-312.
[4] 倪冬, 王延斌, 韩文龙, 等. 沁水南部柿庄南区块3号煤层现今地应力特征及其与渗透率的关系研究. 河南理工大学学报(自然科学版), 2019, 38(1):68-75. NI D, WANG Y B, HAN W L, et al. Characteristic of in-situ stress in No. 3 coal seams of southern Shizhuang block, southern Qinshui Basin,and its influence on permeability. Journal of Henan Polytechnic University(Natural Science), 2019, 38(1):68-75.
[5] PEKOT L J, REEVES S R. Modeling the effects of matrix shrinkage and differential swelling on coalbed methane recovery and carbon sequestration. Proceedings of the 2003 International Coalbed Methane Symposium. University of Alabama, Tuscaloosa, Alabama, 2003.
[6] PALMER I. Permeability changes in coal:Analytical modeling. International Journal of Coal Geology, 2009, 77(2):119-126.
[7] SHI J Q,DURUCAN S. Exponential growth in San Juan Basin Fruitland coalbed permeability with reservoir drawdown:Model match and new insights. SPE Reservoir Evaluation & Engineering, 2010, 13(6):914-925.
[8] WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs. SPE Journal, 1963, 3(3):245-255.
[9] 李传亮, 朱苏阳, 彭朝阳, 等. 煤层气井突然产气机理分析. 岩性油气藏, 2017, 29(2):145-149. LI C L, ZHU S Y, PENG C Y, et al. Mechanism of gas production rate outburst in coalbed methane wells. Lithologic Reservoirs, 2017, 29(2):145-149.
[10] WARPINSKI N R, TEUFEL L W. Determination of the effective-stress law for permeability and deformation in low-permeability rocks. SPE Formation Evaluation, 1992, 7(2):123-131.
[11] SHI J Q, DURUCAN S. A model for changes in coalbed permeability during primary and enhanced methane recovery. SPE Reservoir Evaluation & Engineering, 2005, 8(4):291-299.
[12] 张海茹,李昊. 煤层气峰值产量拟合及产量动态预测方法研究. 岩性油气藏, 2013, 25(4):116-118. ZHANG H R, LI H. Study on coalbed methane peak production fitting and production forecast by different dynamic analysis methods. Lithologic Reservoirs, 2013, 25(4):116-118.
[13] 吴雅琴, 邵国良, 徐耀辉, 等.煤层气开发地质单元划分及开发方式优化:以沁水盆地郑庄区块为例. 岩性油气藏, 2016,28(6):125-133. WU Y Q, SHAO G L, XU Y H, et al. Geological unit division and development model optimization of coalbed methane:a case study from Zhengzhuang block in Qinshui Basin. Lithologic Reservoirs, 2016, 28(6):125-133.
[14] 高为, 金军, 易同生, 等. 黔北小林华矿区高阶煤层气藏特征及开采技术. 岩性油气藏, 2017, 29(5):140-147. GAO W, JIN J, YI T S, et al. Enrichment mechanism and mining technology of high rank coalbed methane in Xiaolinhua coal mine, northern Guizhou. Lithologic Reservoirs, 2017, 29(5):140-147.
[15] SAKAI H, KURIHARA M. Development of double-permeability type compositional simulator for predicting enhanced coalbed methane recovery. The 24th Formation Evaluation Symposium of Japan, Chiba, 2018.
[16] ZIMMERMAN R W. Coupling in poroelasticity and thermoelasticity. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(2):79-87.
[17] KLINKENBERG L J. The permeability of porous media to liquids and gases. API Drilling and Production Practices, 1941:200-213.
[18] CHEN H Y, TEUFEL L W. Coupling fluid-flow and geomechanics in dual-porosity modeling of naturally fractured reservoirs-model description and comparison. SPE 59043, 2000.
[19] CARMAN P C, MALHERBE P R. Routine measurement of surface of paint pigments and other fine powders. I. Journal of the Society of Chemical Industry, 1950, 69(5):134-143.
[20] HARPALANI S, CHEN G. Influence of gas production induced volumetric strain on permeability of coal. Geotechnical and Geological Engineering, 1997, 15(4):303-325.
[21] 李国庆, 孟召平, 王保玉. 高煤阶煤层气扩散-渗流机理及初期排采强度数值模拟. 煤炭学报, 2014, 39(9):1919-1926. LI G Q, MENG Z P, WANG B Y. Diffusion and seepage mechanisms of high rank coal-bed methane reservoir and its numerical simulation at early drainagerate. Journal of China Coal Society, 2014, 39(9):1919-1926.
[22] 尹帅, 丁文龙, 高敏东. 樊庄北部3号煤层现今应力场分布数值模拟.西南石油大学学报(自然科学版), 2017, 39(4):81-89. YIN S, DING W L, GAO M D. The in-situ stress field distribution numerical simulation of No.3 coal seam in the north of Fanzhuang CBM well blocks. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(4):81-89.
[23] 张益, 沈磊, 田喜军, 等.考虑采动影响的煤层气储层数值模拟方法研究. 西安石油大学学报(自然科学版), 2017, 32(6):61-65. ZHANG Y, SHEN L, TIAN X J, et al. Research on numerical simulation method of coal bed gas reservoir under mining condition. Journal of Xi'an Shiyou University(Natural Science Edition), 2017, 32(6):61-65.
[24] 孙政, 李相方, 徐兵祥, 等.一种表征煤储层压力与流体饱和度关系的数学模型.中国科学:技术科学, 2018, 48(5):457-464. SUN Z, LI X F, XU B X, et al. A mathematic model for characterizing the relationship between coal reservoir pressure and fluid saturation. Scientia Sinica Technologica, 2018, 48(5):457-464.
[25] 颜志丰, 琚宜文, 唐书恒, 等. 沁水盆地南部煤层气储层压裂过程数值模拟研究. 地球物理学报, 2013, 56(5):1734-1744. YAN Z F, JU Y W, TANG S H, et al. Numerical simulation study of fracturing process in coalbed methane reservoir in southern Qinshui Basin. Chinese Journal of Geophysics, 2013, 56(5):1734-1744.
[26] 杨新乐, 任常在, 张永利, 等.低渗透煤层气注热开采热-流-固耦合数学模型及数值模拟. 煤炭学报, 2013, 38(6):1044-1049. YANG X L, REN C Z, ZHANG Y L, et al. Numerical simulation of the coupled thermal-fluid-solid mathematical models during extracting methane in low-permeability coal bed by heat injection. Journal of China Coal Society, 2013, 38(6):1044-1049.
[27] 吴金涛, 侯健, 陆雪皎, 等. 注气驱替煤层气数值模拟. 计算物理, 2014, 31(6):681-689. WU J T, HOU J, LU X J, et al. Numerical simulation of coalbed methane displacement with gas injection. Chinese Journal of Computational Physics, 2014, 31(6):681-689.
[28] 范超军, 李胜, 罗明坤, 等. 基于流-固-热耦合的深部煤层气抽采数值模拟. 煤炭学报, 2016, 41(12):3076-3085. FAN C J, LI S, LUO M K, et al. Deep CBM extraction numerical simulation based on hydraulic-mechanical-thermal coupled model. Journal of China Coal Society, 2016, 41(12):3076-3085.
[1] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[2] 苏朋辉, 夏朝辉, 刘玲莉, 段利江, 王建俊, 肖文杰. 澳大利亚M区块低煤阶煤层气井产能主控因素及合理开发方式[J]. 岩性油气藏, 2019, 31(5): 121-128.
[3] 淮银超, 张铭, 谭玉涵, 王鑫. 澳大利亚东部S区块煤层气储层特征及有利区预测[J]. 岩性油气藏, 2019, 31(1): 49-56.
[4] 高为, 金军, 易同生, 赵凌云, 张曼婷, 郑德志. 黔北小林华矿区高阶煤层气藏特征及开采技术[J]. 岩性油气藏, 2017, 29(5): 140-147.
[5] 艾林, 周明顺, 张杰, 梁霄, 钱博文, 刘迪仁. 基于煤岩脆性指数的煤体结构测井定量判识[J]. 岩性油气藏, 2017, 29(2): 139-144.
[6] 李传亮, 朱苏阳, 彭朝阳, 王凤兰, 杜庆龙, 由春梅. 煤层气井突然产气机理分析[J]. 岩性油气藏, 2017, 29(2): 145-149.
[7] 张廷山, 何映颉, 伍坤宇, 林丹, 张朝. 筠连地区上二叠统宣威组沉积相及聚煤控制因素[J]. 岩性油气藏, 2017, 29(1): 1-10.
[8] 吴雅琴,邵国良,徐耀辉,王 乔,刘振兴,帅 哲. 沁水盆地郑庄区块煤层气开发地质单元划分及开发方式优化研究[J]. 岩性油气藏, 2016, 28(6): 125-133.
[9] 冯小英,秦凤启,唐钰童,刘 慧,王 亚 . 沁水盆地煤层含气后的 AVO 响应特征[J]. 岩性油气藏, 2015, 27(4): 103-108.
[10] 伊 伟1,熊先钺1,王 伟1,刘 玲2. 鄂尔多斯盆地合阳地区煤层气赋存特征研究[J]. 岩性油气藏, 2015, 27(2): 38-45.
[11] 闫 霞,李小军,赵 辉,张 伟,王泽斌,毛得雷. 煤层气井井间干扰研究及应用[J]. 岩性油气藏, 2015, 27(2): 126-132.
[12] Yuriy Tyapkin, Iana Mendrii. 改进的地震相干体算法及其应用———以乌克兰顿涅茨盆地裂缝型储层为例[J]. 岩性油气藏, 2013, 25(5): 8-12.
[13] 张海茹,李 昊. 煤层气峰值产量拟合及产量动态预测方法研究[J]. 岩性油气藏, 2013, 25(4): 116-118.
[14] 李传亮,彭朝阳,朱苏阳. 煤层气其实是吸附气[J]. 岩性油气藏, 2013, 25(2): 112-115.
[15] 李传亮,彭朝阳. 煤层气的开采机理研究[J]. 岩性油气藏, 2011, 23(4): 9-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .