岩性油气藏 ›› 2021, Vol. 33 ›› Issue (4): 176–184.doi: 10.12108/yxyqc.20210419

• 石油工程 • 上一篇    

预交联凝胶颗粒的力学性能对微观运移封堵的影响

罗向荣1,2, 赵波3, 任晓娟1,2, 魏静3, 张贞贞3, 王杠杠1,2, 周航轩1,2   

  1. 1. 西安石油大学 西部低渗-特低渗油藏开发与治理教育部工程研究中心, 西安 710065;
    2. 西安石油大学石油工程学院, 西安 710065;
    3. 新疆科力新技术发展股份有限公司, 新疆 克拉玛依 834000
  • 收稿日期:2021-01-11 修回日期:2021-04-13 出版日期:2021-08-01 发布日期:2021-08-06
  • 作者简介:罗向荣(1986-),男,博士,讲师,主要从事提高油气采收率、低渗储层渗流机理及地热能开发方面的研究工作。地址:(710065)陕西省西安市雁塔区电子二路东段18号西安石油大学。Email:xiangrong_luo@163.com。
  • 基金资助:
    国家科技重大专项“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”(编号:2016ZX05050006)、国家自然科学基金应急管理项目(编号:51741407)及陕西省自然科学基础研究计划项目(编号:2021JQ-599)联合资助

Effect of mechanical properties of pre-crosslinked gel particles on micro migration and plugging

LUO Xiangrong1,2, ZHAO Bo3, REN Xiaojuan1,2, WEI Jing3, ZHANG Zhenzhen3, WANG Ganggang1,2, ZHOU Hangxuan1,2   

  1. 1. Engineering Research Center of Development and Management for Low to Extra-Low Permeability Oil & Gas Reservoirs in West China, Ministry of Education, Xi'an Shiyou University, Xi'an 710065, China;
    2. School of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    3. Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
  • Received:2021-01-11 Revised:2021-04-13 Online:2021-08-01 Published:2021-08-06

摘要: 预交联凝胶颗粒在多孔介质中的运移堵塞特征是影响其深部调剖性能的关键。目前,凝胶颗粒的力学性能如何影响其微观运移封堵特征尚缺乏深层次的认识。本文针对收集到的3种预交联凝胶颗粒,首次采用基于图像采集技术的弹性分析方法对凝胶颗粒弹性变形能力进行研究,并采用可视化填砂微观模型实验,重点分析了凝胶颗粒的力学性能对微观运移封堵的影响。结果表明,1#颗粒抗压强度大,韧性较强,不容易破碎,具有一定弹性变形能力,其对孔喉封堵能力强,但注入性较差;3#颗粒抗压强度适中,脆性较强,弹性变形能力弱,注入性好,但封堵能力较差;6#颗粒抗压强度较小,且弹性因子小,具有较好的封堵能力和注入性。预交联凝胶颗粒的弹性和抗压强度影响其在多孔介质中的注入性和封堵强度。该研究成果为预交联凝胶颗粒深部调剖性能评价及优选提供了理论指导和技术支撑。

关键词: 凝胶颗粒, 力学性能, 微观运移, 封堵, 弹性

Abstract: The migration and plugging characteristics of pre-crosslinked gel particles in porous media are the key factors affecting their deep profile control performance. At present,how the mechanical properties of gel particles affect their micro migration and plugging characteristics is not well understood. For the collected three kinds of pre-crosslinked gel particles,the elastic modulus analysis method based on image acquisition technology was used to study the elastic deformation ability of gel particles for the first time,and the influence of the mechanical properties of the gel particles on the micro migration and plugging was analyzed by the experiment of visual microscopic model filled with sands. The results show that No. 1 gel particle with high compressive strength and strong toughness is not easy to be broken. It has some elastic deformation ability,and its plugging capacity is strong and injection capacity is poor. No. 3 gel particle is characterized by moderate compressive strength,strong brittleness, poor elastic deformation ability,strong injection capacity and poor thus plugging capacity. No. 6 gel particle is characterized by poor compressive strength,small elastic factor,good plugging effect and injectability. This study can provide theoretical guidance and technical support for the evaluation of deep profile control performance and optimization of pre-crosslinked gel particles.

Key words: gel particles, mechanical properties, microscopic migration, plugging, elasticity

中图分类号: 

  • TE357
[1] 刘义刚, 丁名臣, 韩玉贵, 等.支化预交联凝胶颗粒在油藏中的运移与调剖特性.石油钻采工艺, 2018, 40(3):393-399. LIU Y G, DING M C, HAN Y G, et al. Migration and profile control properties of B-PPG in oil reservoirs. Oil Drilling & Production Technology, 2018, 40(3):393-399.
[2] SANG Q, LI Y, YU L, et al. Enhanced oil recovery by branchedpreformed particle gel injection in parallel-sandpack models. Fuel, 2014, 136:295-306.
[3] 张保康, 徐国瑞, 铁磊磊, 等. "堵水+调剖" 工艺参数优化和油藏适应评价实验:以渤海SZ36-1油田储层地质和流体条件为例.岩性油气藏, 2017, 29(5):155-161. ZHANG B K, XU G R, TIE L L, et al. Optimization of technological parameters and evaluation of reservoir adaptation by water plugging and profile control:A case from Bohai SZ36-1 oilfield. Lithologic Reservoirs, 2017, 29(5):155-161.
[4] 任晓娟, 李晓骁, 鲁永辉, 等.改进型HV高强度凝胶堵水体系应用.岩性油气藏, 2018, 30(5):131-137. REN X J, LI X X, LU Y H, et al. Application on HV high-strength gel water plugging system. Lithologic Reservoirs, 2018, 30(5):131-137.
[5] 韩培慧, 闫坤, 曹瑞波, 等.聚驱后油层提高采收率驱油方法. 岩性油气藏, 2019, 31(2):143-150. HAN P H, YAN K, CAO R B, et al. Oil displacement methods for enhanced oil recovery after polymer flooding. Lithologic Reservoirs, 2019, 31(2):143-150.
[6] 刘浩旻.预交联凝胶颗粒渗滤规律及提高采收率机理实验研究.北京:中国石油大学(北京), 2016. LIU H M. Experimental research of filtration rules and enhanced oil recovery mechanisms of preformed particle gels. Beijing:China University of Petroleum(Beijing), 2016.
[7] 雷光伦, 郑家朋.孔喉尺度聚合物微球的合成及全程调剖驱油新技术研究.中国石油大学学报:自然科学版, 2007, 31(1):87-90. LEI G L, ZHENG J P. Composing of pore-scale polymer microsphere and its application in improving oil recovery by profile control. Journal of China University of Petroleum(Edition of Natural Science), 2007, 31(1):87-90.
[8] LEI G, LI L, NASR-EL-DIN H A. New gel aggregates to improve sweep efficiency during waterflooding. SPE Reservoir Evaluation & Engineering, 2011, 14(1):120-128.
[9] MOGHADAM A M, SEFTI M V, SALEHI M B, et al. Preformed particle gel:Evaluation and optimization of salinity and pH on equilibrium swelling ratio. Journal of Petroleum Exploration and Production Technologies, 2012, 2(2):85-91.
[10] 岳湘安, 侯吉瑞, 邱茂君, 等.聚合物凝胶颗粒调剖特性评价. 油气地质与采收率, 2006, 13(2):81-84. YUE X A, HOU J R, QIU M J, et al. Evaluation on character of profile control by polymer gel particle. Petroleum Geology and Recovery Efficiency, 2006, 13(2):81-84.
[11] 王代流, 肖建洪.交联聚合物微球深部调驱技术及其应用.油气地质与采收率, 2008, 15(2):86-88. WANG D L, XIAO J H. Application of deep-profile control and displacement technology of crosslinked polymer micro-ball system. Petroleum Geology and Recovery Efficiency, 2008, 15(2):86-88.
[12] YAO C, LEI G, LI L, et al. Selectivity of pore-scale elastic microspheres as a novel profile control and oil displacement agent. Energy & Fuels, 2012, 26(8):5092-5101.
[13] Al-IBADI A, CIVAN F. Experimental study of gel particles transport through porous media. SPE 153557, 2012.
[14] BAI B, LIU Y, COSTE J, et al. Preformed particle gel for conformance control:Transport mechanism through porous media. SPE 89468, 2004.
[15] 赵帅.分散凝胶与孔喉匹配关系及调驱机理研究.成都:西南石油大学, 2017:25-30. ZHAO S. Study on the matching relationship between dispersion gel and pore throat and profile control and oil displacement mechanism. Chengdu:Southwest Petroleum University, 2017:25-30.
[1] 刘梦丽, 徐兴荣, 王小卫, 胡书华, 刘金涛. 预条件弹性介质最小二乘逆时偏移[J]. 岩性油气藏, 2020, 32(5): 133-142.
[2] 李玉凤, 孙炜, 何巍巍, 杨云飞, 章新文, 严移胜. 基于叠前反演的泥页岩地层压力预测方法[J]. 岩性油气藏, 2019, 31(1): 113-121.
[3] 陈宇豪, 王克亮, 李根, 逯春晶. 大粒径调剖颗粒封堵机理及深部运移性能评价[J]. 岩性油气藏, 2019, 31(1): 159-164.
[4] 李传亮, 朱苏阳, 刘东华. 盖层封堵油气的机理研究[J]. 岩性油气藏, 2019, 31(1): 12-19.
[5] 彭达, 肖富森, 冉崎, 谢冰, 陈骁, 张福宏, 陈康, 许翔. 基于KT模型流体替换的岩石物理参数反演方法[J]. 岩性油气藏, 2018, 30(5): 82-90.
[6] 陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟[J]. 岩性油气藏, 2014, 26(5): 91-96.
[7] 黄春霞,郭茂雷,余华贵,张新春,张冠华,周海成. 空气泡沫在非均质油藏中渗流能力的实验研究[J]. 岩性油气藏, 2014, 26(2): 128-132.
[8] 刘晓鹏,欧阳诚,彭宇,何葵. 岩石物理参数分析在苏59 区块的应用[J]. 岩性油气藏, 2012, 24(4): 80-84.
[9] 陈恒,杜建芬,郭平,刘东华,肖峰,杨作明. 裂缝型凝析气藏的动态储量和水侵量计算研究[J]. 岩性油气藏, 2012, 24(1): 117-120.
[10] 陈可洋. 井间弹性波波场散射特征数值模拟分析[J]. 岩性油气藏, 2011, 23(3): 91-96.
[11] 周丛丛. 聚合物驱相对渗透率计算的微观模拟研究[J]. 岩性油气藏, 2011, 23(3): 119-123.
[12] 李国福,苏云,黄倩. 弹性波阻抗反演技术的应用[J]. 岩性油气藏, 2010, 22(Z1): 80-84.
[13] 王浩,罗兵,李霆. 弹性阻抗对比分析[J]. 岩性油气藏, 2010, 22(3): 110-113.
[14] 刘全新,方光建. 利用模拟退火算法实现地震叠前反演[J]. 岩性油气藏, 2010, 22(1): 87-92.
[15] 刘雯林. 煤层气地球物理响应特征分析[J]. 岩性油气藏, 2009, 21(2): 113-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[6] 张学涛,王祝文,原镜海. 利用时频分析方法在阵列声波测井中区分油水层[J]. 岩性油气藏, 2008, 20(1): 101 -104 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .
[9] 卢德根,刘林玉,刘秀蝉,李文斌. 鄂尔多斯盆地镇泾区块长81 亚段成岩相研究[J]. 岩性油气藏, 2010, 22(1): 82 -86 .
[10] 郑雷清. 综合识别方法在低阻油气层勘探中的应用[J]. 岩性油气藏, 2007, 19(2): 71 -75 .