岩性油气藏 ›› 2023, Vol. 35 ›› Issue (4): 29–36.doi: 10.12108/yxyqc.20230403

• 地质勘探 • 上一篇    下一篇

玛湖凹陷三叠系百口泉组致密砾岩储层水力裂缝特征及形成机制

覃建华1, 王建国2, 李思远1, 李胜1, 窦智2,3, 彭仕宓2   

  1. 1. 中国石油新疆油田公司 勘探开发研究院, 新疆 克拉玛依 834000;
    2. 中国石油大学 (北京), 北京 昌平 102249;
    3. 中国石油东方地球物理公司研究院 乌鲁木齐分院, 乌鲁木齐 830026
  • 收稿日期:2022-08-01 修回日期:2022-11-26 出版日期:2023-07-01 发布日期:2023-07-01
  • 第一作者:覃建华(1970-),男,博士,教授级高级工程师,主要从事油气田开发工作。地址:(834000) 新疆克拉玛依市中国石油新疆油田公司勘探开发研究院。Email:qjianhua@petrochina.com.cn。
  • 通信作者: 王建国(1978-),男,博士,副教授,主要从事油气田开发地质教学与科研工作。Email:wjglww@cup.edu.cn。
  • 基金资助:
    中国石油科技创新基金项目“致密油储层微-纳米孔隙构建系统与润湿性的耦合机制”(编号:2019D-5007-0202)与中国石油天然气集团有限公司-中国石油大学(北京)战略合作科技专项“准噶尔盆地玛湖中下组合和吉木萨尔陆相页岩油高效勘探开发理论及关键技术研究”(编号:ZLZX2020-01)联合资助。

Characteristics and formation mechanism of hydraulic fractures in tight conglomerate reservoirs of Triassic Baikouquan Formation in Mahu Sag

QIN Jianhua1, WANG Jianguo2, LI Siyuan1, LI Sheng1, DOU Zhi2,3, PENG Simi2   

  1. 1. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    2. China University of Petroleum(Beijing), Beijing 102249, China;
    3. Urumqi Branch, Research Institute of BGP, CNPC, Urumqi 830026, China
  • Received:2022-08-01 Revised:2022-11-26 Online:2023-07-01 Published:2023-07-01

摘要: 水力裂缝的分布规律对致密砾岩油藏高效开发至关重要。通过对玛湖凹陷已压裂砾岩油区的水平取心井MaJ02井的岩心裂缝观察,剖析了玛湖凹陷三叠系百口泉组致密砾岩储层中水力裂缝的类型、产状、组系、开度、密度及支撑剂充填情况,明确了其分布特征,并探讨了其形成机制。研究结果表明: ①玛湖凹陷MaJ02井百口泉组岩心中发育的水力裂缝条数占总裂缝数的77.6%,走向为90°~110°,倾角为70°~90°。②研究区主要发育以走滑机制形成的剪切缝,占比为65.8%,其次为张应力形成的张性缝,占比为34.2%。剪切缝多成组出现,开度较小,多为全充填,裂缝面以“穿砾”为主,多条裂缝叠加而形成缝网破碎带;而张性缝多为单条出现,开度相对较大,裂缝面不规则,为全充填或半充填,裂缝面以“绕砾”为主。③研究区取心井与已压裂井距离越小,压裂段射孔簇间距越小,水力裂缝密度越大。在压裂工程条件相同的情况下,泥质支撑漂浮砾岩相和前缘席状砂微相的裂缝相对发育,砂质含量越高,水力裂缝密度越大。

关键词: 致密砾岩, 水力裂缝, 张性缝, 剪切缝, 形成机制, 百口泉组, 三叠系, 玛湖凹陷

Abstract: The distribution of hydraulic fractures is very important for the efficient development of tight conglomerate reservoirs. Through the observation of fractures in the core from the horizontal coring well MaJ02 in the fractured conglomerate oil area of Mahu Sag,the type,occurrence,formation,opening,density and proppant filling of hydraulic fractures in the tight conglomerate reservoirs of Triassic Baikouquan Formation in Mahu Sag were analyzed,their distribution characteristics were clarified,and the formation mechanism was discussed. The results show that:(1)The hydraulic fractures developed in the cores of Baikouquan Formation in well MaJ02 account for 77.6% of the total number of fractures,with a strike of 90°-110 ° and a dip angle of 70°-90°. (2)The shear fractures formed by strike-slip mechanism in the study area account for 65.8%,followed by tensile fractures formed by tensile stress,accounting for 34.2%. Most of the shear fractures are in groups with small openings and fully filled,and the fracture surface is mainly through gravel,and multiple cracks are superimposed to form a fracture network fracture zone. The tensile fractures are mostly single with relatively large openings and irregular fracture surface,which are fully or half-filled,and the fracture surface is mainly surrounded by gravel.(3)The smaller the distance between the coring well and the fractured well in the study area,the smaller the perforation cluster spacing in the fracturing section,and the greater the hydraulic fracture density. Under the same fracturing engineering conditions,the fractures of argillaceous supported floating conglomerate facies and front sheet sand microfacies are relatively developed. The higher the sand content,the greater the hydraulic fracture density.

Key words: tight conglomerate, hydraulic fracture, tensile fracture, shear fracture, formation mechanism, Baikouquan Formation, Triassic, Mahu Sag

中图分类号: 

  • TE122.2
[1] 唐勇,曹剑,何文军,等.从玛湖大油区发现看全油气系统地质理论发展趋势[J].新疆石油地质, 2021, 42(1):1-9. TANG Yong, CAO Jian, HE Wenjun, et al. Development tendency of geological theory of total petroleum system:Insights from the discovery of Mahu large oil province[J]. Xinjiang Petroleum Geology, 2021, 42(1):1-9.
[2] 陈静,陈军,李卉,等.准噶尔盆地玛中地区二叠系-三叠系叠合成藏特征及主控因素[J].岩性油气藏, 2021, 33(1):71-80. CHEN Jing, CHEN Jun, LI Hui, et al. Characteristics and main controlling factors of Permian-Triassic superimposed reservoirs in central Mahu Sag, Junggar Basin[J]. Lithologic Reservoirs, 2021, 33(1):71-80.
[3] 张昌民,刘江艳,潘进,等.玛湖凹陷百口泉组砂砾岩建筑结构要素层次分析[J].新疆石油地质, 2018, 39(1):23-34. ZHANG Changmin, LIU Jiangyan, PAN Jin, et al. Hierarchical architectural element analysis for sandy conglomerate deposits of Baikouquan Formation, Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):23-34.
[4] 杜猛,向勇,贾宁洪,等.玛湖凹陷百口泉组致密砂砾岩储层孔隙结构特征[J].岩性油气藏, 2021, 33(5):120-131. DU Meng, XIANG Yong, JIA Ninghong, et al. Pore structure characteristics of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag[J]. Lithologic Reservoirs, 2021, 33(5):120-131.
[5] 李国欣,覃建华,鲜成钢,等.致密砾岩油田高效开发理论认识、关键技术与实践:以准噶尔盆地玛湖油田为例[J].石油勘探与开发, 2020, 47(6):1185-1197. LI Guoxin, QIN Jianhua, XIAN Chenggang, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development:A case study of the Mahu oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6):1185-1197.
[6] 赵超峰,贾振甲,田建涛,等.基于井中微地震监测方法的压裂效果评价:以吉林探区Y22井为例[J].岩性油气藏, 2020, 32(2):161-168. ZHAO Chaofeng, JIA Zhenjia, TIAN Jiantao, et al. Fracturing effect evaluation based on borehole microseismic monitoring method:A case study from well Y22 in Jilin exploration area[J]. Lithologic Reservoirs, 2020, 32(2):161-168.
[7] LIN Menglu, CHEN Shengnan, DING Wei, et al. Effect of fracture geometry on well production in hydraulic-fractured tight oil reservoirs[J]. Journal of Canadian Petroleum Technology, 2015, 54(3):183-194.
[8] URBAN-RASCON E,AGUILERA R. Hydraulic fracturing modeling, fracture network, and microseismic monitoring[C]. Calgary:SPE Canada Unconventional Resources Conference, 2020.
[9] CIEZOBKA J, REEVES S. Overview of hydraulic fracturing test sites (HFTS) in the Permian basin and summary of selected results (HFTS-I in Midland and HFTS-Ⅱ in Delaware)[C]. Online:Latin America Unconventional Resources Technology Conference, 2020.
[10] RASSENFOSS S. A look into what fractures really look like[J]. Journal of Petroleum Technology, 2018, 70(11):28-36.
[11] MAITY D, CIEZOBKA J. Digital fracture characterization at hydraulic fracturing test site HFTS-Midland:Fracture clustering, stress effects and lithologic controls[C]. Online:SPE Hydraulic Fracturing Technology Conference and Exhibition, 2021.
[12] WANG Shugang,TAN Yunhui,SANGNIMNUAN A,et al. Learnings from the hydraulic fracturing test site (HFTS)#1, Midland Basin, West Texas:A geomechanics perspective[C]. Denver:Unconventional Resources Technology Conference, 2019.
[13] ZHAO Yu, BESSA F, SAHNI V, et al. Key learnings from hydraulic fracturing test site-2(HFTS-2), Delaware Basin[C]. Houston:SPE/AAPG/SEG Unconventional Resources Technology Conference, 2021.
[14] PUDUGRAMAM V S, ZHAO Y, BESSA F, et al. Analysis and integration of the hydraulic fracturing test site-2(HFTS-2) comprehensive dataset[C]. Houston:SPE/AAPG/SEG Unconventional Resources Technology Conference, 2021.
[15] SALAHSHOOR S. Analysis and Interpretation of multi-source data at the hydraulic fracturing test site:A data-driven approach to improve well performance evaluation in heterogeneous formations[C]. Online:Unconventional Resources Technology Conference, 2020:11.
[16] 牛小兵,冯胜斌,尤源,等.致密储层体积压裂作用范围及裂缝分布模式:基于压裂后实际取心资料[J].石油与天然气地质, 2019, 40(3):669-677. NIU Xiaobing, FENG Shengbin, YOU Yuan, et al. Fracture extension and distribution pattern of volume fracturing in tight reservoir:An analysis based on actual coring data after fracturing[J]. Oil&Gas Geology, 2019, 40(3):669-677.
[17] 支东明,唐勇,郑孟林,等.玛湖凹陷源上砾岩大油区形成分布与勘探实践[J].新疆石油地质, 2018, 39(1):1-8. ZHI Dongming, TANG Yong, ZHENG Menglin, et al. Discovery, distribution and exploration practice of large oil provinces of above-source conglomerate in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):1-8.
[18] 余兴,尤新才,白雨,等.玛湖凹陷南斜坡断裂识别及其对油气成藏的控制作用[J].岩性油气藏, 2021, 33(1):81-89. YU Xing, YOU Xincai, BAI Yu, et al. Identification of faults in the south slope of Mahu Sag and its control on hydrocarbon accumulation[J]. Lithologic Reservoirs, 2021, 33(1):81-89.
[19] 宋永,周路,吴勇,等.准噶尔盆地玛东地区百口泉组多物源砂体分布预测[J].新疆石油地质, 2019, 40(6):631-637. SONG Yong, ZHOU Lu, WU Yong, et al. Prediction of multiprovenance sand body distribution in Triassic Baikouquan Formation of Madong area, Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(6):631-637.
[20] 唐勇,徐洋,李亚哲,等.玛湖凹陷大型浅水退覆式扇三角洲沉积模式及勘探意义[J].新疆石油地质, 2018, 39(1):16-22. TANG Yong, XU Yang, LI Yazhe, et al. Sedimentation model and exploration significance of large-scaled shallow retrogradation fan delta in Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1):16-22.
[21] 刘敬寿,戴俊生,王珂,等.斜井岩心裂缝产状校正方法及其应用[J].石油学报, 2015, 36(1):67-73. LIU Jingshou, DAI Junsheng, WANG Ke, et al. An approach to correct the core fracture attitude in deviated boreholes and its application[J]. Acta Petrolei Sinica, 2015, 36(1):67-73.
[22] 杨帆,卞保力,刘慧颖,等.玛湖凹陷二叠系夏子街组限制性湖盆扇三角洲沉积特征[J].岩性油气藏, 2022, 34(5):63-72. YANG Fan, BIAN Baoli, LIU Huiying, et al. Sedimentary characteristics of fan delta in restricted lacustrine basin of Permian Xiazijie Formation in Mahu Sag[J]. Lithologic Reservoirs, 2022, 34(5):63-72.
[1] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[2] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[3] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[4] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[5] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[6] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[7] 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49.
[8] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[9] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[10] 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68.
[11] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
[12] 尹艳树, 丁文刚, 安小平, 徐振华. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 2023, 35(4): 37-49.
[13] 薛楠, 邵晓州, 朱光有, 张文选, 齐亚林, 张晓磊, 欧阳思琪, 王淑敏. 鄂尔多斯盆地平凉北地区三叠系长7段烃源岩地球化学特征及形成环境[J]. 岩性油气藏, 2023, 35(3): 51-65.
[14] 文雯, 杨西燕, 向曼, 陶夏妍, 杨容, 李阳, 范家兴, 蒲柏宇. 四川盆地开江—梁平海槽东侧三叠系飞仙关组鲕滩储层特征及控制因素[J]. 岩性油气藏, 2023, 35(2): 68-79.
[15] 肖玲, 陈曦, 雷宁, 易涛, 郭文杰. 鄂尔多斯盆地合水地区三叠系长7段页岩油储层特征及主控因素[J]. 岩性油气藏, 2023, 35(2): 80-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .