岩性油气藏 ›› 2012, Vol. 24 ›› Issue (2): 106–110.doi: 10.3969/j.issn.1673-8926.2012.02.021

• 油气田开发 • 上一篇    下一篇

低矿化度水驱研究进展及展望

王平1,姜瑞忠1,王公昌1,梁宇2   

  1. 1.中国石油大学(华东)石油工程学院;2.怀俄明大学
  • 出版日期:2012-04-20 发布日期:2012-04-20
  • 第一作者:王平(1988-),男,中国石油大学(华东)在读硕士研究生,主要从事油气田开发工程研究工作。地址:(266580)山东省青岛 市经济技术开发区长江西路66 号中国石油大学(华东)石油工程学院。E-mail:changshan880820@163.com
  • 通信作者: 姜瑞忠(1964-),教授,博士生导师,主要从事油气田开发教学及研究工作。E-mail:jrzhong@upc.edu.cn
  • 基金资助:

    国家科技重大专项“大型油气田及煤层气开发”(编号:2008ZX05013-002)资助

Research advance and prospect of low salinity water flooding

WANG Ping1, JIANG Ruizhong1,WANG Gongchang1, LIANG Yu2   

  1. 1. College of Petroleum Engineering, China University of Petroleum, Qingdao 266580, China; 2. University of Wyoming, Laramie 82071, USA
  • Online:2012-04-20 Published:2012-04-20

摘要:

针对国外低矿化度水驱已运用于矿场实践而国内相关研究还未开展的现状,对低矿化度水驱机理 及其存在的问题进行了综述,并对低矿化度水驱的发展趋势作了展望。对于砂岩油藏,低矿化度水驱提高 采收率的机理主要为类碱驱、微粒运移以及多组分离子交换引起的储层润湿性改变;而对于碳酸盐岩油 藏,低矿化度水驱提高采收率的机理则主要是多组分离子交换引起的储层润湿性改变。原油性质、储层 性质、地层水及注入水性质、地层温度等因素均可以影响低矿化度水驱提高采收率的效果。目前低矿化度 水驱存在的问题主要包括提高采收率机理不清、低矿化度水源限制、油田储层适应性问题等。最后指出, 低矿化度水驱若与现有油田开发技术、煤层气生产技术、低渗透油田及高含水油田开发技术相结合,将会 是经济、环保、潜力巨大的提高采收率新技术。

关键词: 储层特征, 沉积作用, 成岩作用, 延长组, 南梁地区, 鄂尔多斯盆地

Abstract:

Aiming at the current status that low salinity water flooding has been applied to pilot test abroad while in China there is little research, this paper analyzed the current research status and existing problems, and proposed prospects for low salinity water flooding. It is concluded that for sand reservoirs, the main mechanisms of low salinity water flooding are similar to alkaline flooding, fines migration and the wettability alteration caused bymulti-component ion exchange, while for carbonate reservoirs, the mechanismof lowsalinitywater flooding is wettability alteration caused bymulti-component ion exchange. Crude oil properties, reservoir rock properties, formation and injected water salinity and reservoir temperature can all influence the effects of low salinity water flooding. The main problems lie in the unclear mechanisms, low salinity water source limitation and reservoir adaptability. Finally, it is pointed out that low salinity water flooding can be combined with current oilfield development techniques, coal bed methane production techniques, development techniques for low permeability oilfield and high water-cut oilfield, which will form new economical, environmental-friendly and great potential techniques for enhanced oil recovery.

Key words: reservoir characteristics, sedimentation, diagenesis, YanchangFormation, Nanliang area, Ordos Basin

[1] Lager A,Webb K J,Black C J,et al. Low salinity oil recovery—An experimental investigation[J]. Petrophysics,2008,49(1): 28-35.
[2] 于成龙,李慧敏,赵敏,等.水驱油田井网加密合理井数的计算方法研究[J].岩性油气藏,2011,23(1):111-113.
[3] 胡永乐,王燕灵,杨思玉,等.注水油田高含水后期开发技术方针的调整[J].石油学报,2004,25(5):65-69.
[4] 聂海峰,董立全,董伟,等.堡子湾耿43 井区长4+5 段开发调整方案设计及优选[J].岩性油气藏,2011,23(3):129-132.
[5] 刘瑞果,王为民,苏进昌.歧口18-1 油田晚期注水研究[J].岩性油气藏,2009,21(1)):116-119.
[6] 王道富,付金华,雷启鸿,等.鄂尔多斯盆地低渗透油气田勘探开发技术与展望[J].岩性油气藏,2007,19(3):126-130.
[7] 李书恒,赵继勇,崔攀峰,等.超低渗透储层开发技术对策[J].岩性油气藏,2008,20(3):128-131.
[8] 韩大匡.关于高含水油田二次开发理念、对策和技术路线的探讨[J].石油勘探与开发,2010,37(5):583-591.
[9] Zhang Y,Xie X,Morrow N R. Waterflood performance by injection of brine with different salinity for reservoir cores[R]. SPE 109849,2007.
[10] Ligthelm D J,Gronsveld J,Hofman J P,et al. Novel water flooding strategy by manipulation of injection brine composition [R]. SPE119835,2009.
[11] Idowu J,Somerville J,Adebari D,et al. Effect of salinity changes of the injected water on water flooding performance in carbonate reservoirs[R]. SPE 150816,2011.
[12] Nasralla R A,Alotaibi M B,Nasr-EI-Din H A. Efficiency of oil Recovery by low salinity water flooding in sandstone reservoirs[R]. SPE 144602,2011.
[13] RezaeiDoust A,Puntervold T,Austad T. A discussion of the low salinity EOR potential for a North Sea sandstone field [R]. SPE134459,2010.
[14] McGuire P L,Chatham J R,Paskvan F K,et al. Low salinity oil recovery:An exciting new EOR opportunity for Alaska’s North Slope[R]. SPE 93903, 2005.
[15] Nasralla R A,Alotaibi M B,Nasr-EI-Din H A. Core flood sudy oflow salinity water injection in sandstone reservoirs[R]. SPE 149077,2011.
[16] Nasralla R A,Bataweel M A,Nasr-EI-Din H A. Investigation of wettability alteration by low salinity water in sandstone rock [R].SPE 146322,2011.
[17] Cense A W,Berg S,Jansen E,et al. Direct visualization of designer water flooding in model experiments[R]. SPE 144936,2011.
[18] Yousef A A,Al-Saleh S,Al-Kaabi A,et al. Laboratory investigation of novel oil recovery method for carbonate reservoirs [R]. CSUG/SPE 137634,2010.
[19] Yousef A A,Al-Saleh S,Al-Jawfi M. New recovery method for carbonate reservoirs through tuning the injection water salinity:Smart water flooding[R]. SPE 143550,2011.
[20] Wu Yu-Shu,Bai Baojun. Efficient simulation for low-salinity water flooding in porous and fractured reservoirs[R]. SPE 118830,2009.
[21] Jerauld G R,Lin C Y,Webb K J,et al. Modeling low-salinity water flooding[R]. SPE 102239,2008.
[22] Sorbie K S,Collins I R. A proposed pore-scale mechanism for how low salinity water flooding works[R]. SPE 129833,2010.
[23] Rivet S M,Lake L W,Pope G A. A coreflood investigation of lowsalinity enhanced oil recovery[R]. SPE 134297,2010.
[24] Austad T,RezaeiDoust A,Puntervold T. Chemical mechanism of low salinity water flooding in sandstone reservoirs[R]. SPE 129767,2010.
[25] Robertson E P. Low-salinity water flooding to improve oil recovery historical field evidence[R]. SPE 109965,2007.
[26] Lager A,Webb K J,Collins I R,et al. Evidence of enhanced oil recovery at the reservoir scale[R]. SPE 113976,2008.
[27] Lee S Y,Webb K J,Collins I R,et al. Low salinity oil recovery:Increasing understanding of the underlying mechanisms [R]. SPE129722,2010.
[28] 金华,袁润成,史斌,等.段六拨油田注水过程储层损害原因分析[J]. 油气田地面工程,2007,26(10):36-37.
[29] Galliano G,Federici M,Cavallaro A. Formation damage control:Selecting optimum salinity in a water flooding pilot [J]. Journal of Canadian Petroleum Technology,2002,41(2):55-60.
[30] Aleidan A,Mamora D D. SWACO2 and WACO2 efficiency improvement in carbonate cores by lowering water salinity[R] . CSUG/ SPE 137548,2010.
[31] Pu H,Xie X,Yin P,et al. Low salinity water flooding and mineral dissolution[R]. SPE 134042,2010.
[32] Mahani H,Sorop T G,Ligthelm D,et al. Analysis of field responses to low-salinity water flooding in Secondary and Tertiary Mode in Syria[R]. SPE 142960,2011.
[1] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[2] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[3] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[4] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[5] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[6] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[7] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[8] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[9] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[10] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
[11] 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区中—晚二叠世构造-沉积环境与原型盆地演化[J]. 岩性油气藏, 2024, 36(1): 32-44.
[12] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
[13] 杜江民, 崔子豪, 贾志伟, 张毅, 聂万才, 龙鹏宇, 刘泊远. 鄂尔多斯盆地苏里格地区奥陶系马家沟组马五5亚段沉积特征[J]. 岩性油气藏, 2023, 35(5): 37-48.
[14] 李盛谦, 曾溅辉, 刘亚洲, 李淼, 焦盼盼. 东海盆地西湖凹陷孔雀亭地区古近系平湖组储层成岩作用及孔隙演化[J]. 岩性油气藏, 2023, 35(5): 49-61.
[15] 魏嘉怡, 王红伟, 刘刚, 李涵, 曹茜. 鄂尔多斯盆地西缘冲断带石炭系羊虎沟组沉积特征[J]. 岩性油气藏, 2023, 35(5): 120-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .