岩性油气藏

• 技术方法 • 上一篇    下一篇

模拟地层条件下膏泥岩高频声波测试及频散外推对比研究

李双贵1,2,张俊2,易浩2,周文3,单玉铭3,尹帅3   

  1. 1.西南石油大学 石油工程学院,成都 610500; 2.中国石化西北油田分公司 工程技术研究院, 乌鲁木齐 830011; 3.成都理工大学 能源学院,成都 610059
  • 出版日期:2014-02-05 发布日期:2014-02-05
  • 第一作者:李双贵(1979-),男,高级工程师,西南石油大学在读硕士研究生,研究方向为钻井技术研究。 地址:(830011)新疆乌鲁木齐市长春南路 466 号 B503 室。 电话:(0991)3161185。 E-mail:lishuanggui2004@126.com。
  • 基金资助:

    国家“十二五”重大科技专项“缝洞型碳酸盐岩油藏高效酸压改造技术”(编号:2011ZX05014-006)资助

Comparative study of high frequency acoustic wave test and dispersion extrapolation of gypsum mudstone in simulated formation

LI Shuanggui 1,2, ZHANG Jun2, YI Hao2, ZHOU Wen3, SHAN Yuming3, YIN Shuai3   

  1. 1. School of Petroleum Engineering, Southwest University of Petroleum, Chengdu 610500, China; 2. Research Institute of Engineering and Technology,Northwest Oilfield Company, Sinopec, Urumqi 830011, China; 3. College of Energy Resources, Chengdu University of Technology, Chengdu 610059, China
  • Online:2014-02-05 Published:2014-02-05

摘要:

为了获得塔里木 A 区古近系地层中膏泥岩在声波测井 20 kHz 频率下纵横波时差之间及与其他静力学参数之间的转换关系,开展了室内 1 000 kHz 高频声波测试。 根据测试声波波速值、品质因子和频散方程外推 20 kHz 频率的声波波速。 2 种频率下波速或声波时差对比分析表明:模拟地层条件下转换后的纵波时差(实验校正)与测井纵波时差更为接近;常温到 85 ℃范围内相同净围压下波速和品质因子变化较小,波速变化可以忽略,品质因子变化范围为 5%~7%;在不断增加净围压条件下,波速和品质因子都增加,且幅度显著;模拟地层条件下与常温、常压下相比,纵波波速增量为 2.7%~8.4%,纵波品质因子增量为 27%~58%,膏泥岩频散度为 7.4%~24.4%,平均为 15.12%,频散度较大。 通过对频散方程变形得出了一种可直观表现本区膏泥岩在模拟地层条件下品质因子与波速降低幅度之间的表达式, 同时根据膏泥岩品质因子影响因素,将该区古近系地层的膏泥岩纵波按由高到低划分为Ⅰ,Ⅱ,Ⅲ共 3 个频散等级,最后探讨了频散效应在横波时差预测中的应用。 结果表明:在 1 000 kHz 和 20 kHz 频率下,利用纵波时差预测的横波时差在该区膏泥岩声波时差变化范围内,平均相对误差仅 2%,误差整体随着石膏含量的增加而增大,这 2 种频率下纵横波时差拟合公式都可应用到横波时差预测(利用测井纵波时差值进行预测)中,但由于膏泥岩频散度大,因而 2 种频率间声波时差值变化较大,应用时应进行频散校正。

关键词: 油井, 产能, 产能指数, 油嘴产能指数, 产能曲线, 产能测试

Abstract:

In order to obtain the transformational relations between shear wave slowness time and compressional wave slowness time and other statics parameters of the gypsum mudstone of Paleogene in An area of Tarim Basin at 20 kHz, we conducted indoor 1 000 kHz high frequency acoustic wave test, and extrapolate the acoustic wave velocity at 20 kHz based on the tested acoustic wave velocity, quality factor and dispersion equation. The comparative analysis of the acoustic wave or acoustic wave slowness time at these two kinds of frequencies shows that the compressional wave slowness time is closer to logging compressional wave slowness time value under simulated formation condition; the wave velocity and quality factor change slightly within 85 ℃, the changes of wave velocity can be ignored, and the quality factor ranges from 5% to 7%; both the wave velocity and quality factor increase with the increasing of net confining pressure; comparing with compressional under simulated formation conditions and atmospheric pressure, the compressional wave velocity increment is 2.7% to 8.4%, and the compressional wave quality factor increment is 27% to 58%, gypsum mudstone dispersion degree is 7.4% to 24.4% (average 15.12%), with relatively large dispersion degree. By using the deformation of dispersion equation, we proposed an intuitive expression between quality factor and wave velocity decline of gypsum mudstone under simulated formation condition. According to the influencing factors of gypsum mudstone quality factor, the compressional wave of gypsum mudstone was divided intoⅠ, Ⅱ, Ⅲ three levels of dispersion from high to low, at last dispersion effect was discussed in the application of shear wave slowness time prediction. The results show that under the conditions of 1 000 kHz and 20 kHz frequency, the average relative error of shear wave slowness time predicted by compressional wave slowness time is only 2% within the variation range of gypsum mudstone acoustic time, and the error has the trend of increase with the increasing of gypsum content. The fitting formula of compressional wave slowness to shear wave slowness can be applied to the prediction of shear wave slowness under the two kinds of frequencies. Because the dispersion degree of gypsum mudstone is larger, and the acoustic slowness varies greatly under the two kinds of frequencies, so dispersion calibration should be applied in the actual application.

Key words: well, productivity, productivity index, nozzle productivity index, productivity curve, productivity test

[1] 何贤, 闫建平, 王敏, 王军, 耿斌, 李志鹏, 钟光海, 张瑞湘. 低渗透砂岩孔隙结构与采油产能关系——以东营凹陷南坡F154区块为例[J]. 岩性油气藏, 2022, 34(1): 106-117.
[2] 孔垂显, 巴忠臣, 崔志松, 华美瑞, 刘月田, 马晶. 火山岩油藏压裂水平井应力敏感产能模型[J]. 岩性油气藏, 2021, 33(4): 166-175.
[3] 宋宣毅, 刘月田, 马晶, 王俊强, 孔祥明, 任兴南. 基于灰狼算法优化的支持向量机产能预测[J]. 岩性油气藏, 2020, 32(2): 134-140.
[4] 苏朋辉, 夏朝辉, 刘玲莉, 段利江, 王建俊, 肖文杰. 澳大利亚M区块低煤阶煤层气井产能主控因素及合理开发方式[J]. 岩性油气藏, 2019, 31(5): 121-128.
[5] 姬靖皓, 席家辉, 曾凤凰, 杨啟桂. 致密油藏分段多簇压裂水平井非稳态产能模型[J]. 岩性油气藏, 2019, 31(4): 157-164.
[6] 李传亮, 朱苏阳, 柴改建, 董凤玲. 直井与水平井的产能对比[J]. 岩性油气藏, 2018, 30(N): 12-16.
[7] 徐波, 王建, 于乐丹, 王凯泽, 董凤娟, 刘峰. 致密油储层成岩相类型及其对产能的影响——以鄂尔多斯盆地姜家川地区长8储层为例[J]. 岩性油气藏, 2018, 30(6): 109-116.
[8] 潘有军, 荆文波, 徐赢, 赵嗣君, 李继成, 陶登海. 火山岩油藏水平井体积压裂产能预测研究[J]. 岩性油气藏, 2018, 30(3): 159-164.
[9] 李小龙, 许华儒, 刘晓强, 王涛, 张凯文, 曲占庆. 径向井压裂裂缝形态及热采产能研究[J]. 岩性油气藏, 2017, 29(6): 154-160.
[10] 黄全华, 童凯, 陈冲, 陆云, 付云辉. 厚层气藏气井拟稳态产能研究[J]. 岩性油气藏, 2017, 29(6): 148-153.
[11] 陈明强, 王宁, 张阳, 任龙. 渭北油田浅层油藏产能预测方法[J]. 岩性油气藏, 2017, 29(5): 134-139.
[12] 何吉祥, 姜瑞忠, 毛瑜, 袁淋. 致密气藏气水两相压裂水平井产能计算方法[J]. 岩性油气藏, 2017, 29(4): 154-161.
[13] 严向阳, 王腾飞, 何双喜, 申贝贝, 徐永辉, 陈林. 过量顶替液作业下压裂水平气井的产能模拟[J]. 岩性油气藏, 2017, 29(1): 140-146.
[14] 李传亮,朱苏阳. 关于油藏含水上升规律的若干问题[J]. 岩性油气藏, 2016, 28(3): 1-5.
[15] 袁 淋,王朝明,李晓平,胡新佳,曾 力. 致密砂岩气藏气水同产水平井产能公式推导及应用[J]. 岩性油气藏, 2016, 28(3): 121-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[4] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[5] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[6] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[7] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .
[8] 袁云峰,才业,樊佐春,姜懿洋,秦启荣,蒋庆平. 准噶尔盆地红车断裂带石炭系火山岩储层裂缝特征[J]. 岩性油气藏, 2011, 23(1): 47 -51 .
[9] 袁剑英,付锁堂,曹正林,阎存凤,张水昌,马达德. 柴达木盆地高原复合油气系统多源生烃和复式成藏[J]. 岩性油气藏, 2011, 23(3): 7 -14 .
[10] 耿燕飞,张春生,韩校锋,杨大超. 安岳—合川地区低阻气层形成机理研究[J]. 岩性油气藏, 2011, 23(3): 70 -74 .