Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (3): 49-59.doi: 10.12108/yxyqc.20220305

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Characteristics of pore-fracture filling and fluid source of Cretaceous Bashijiqike Formation in Keshen well block,Kuqa Depression

WANG Linbo1,2, HAN Denglin1,2, WANG Chenchen2,3, YUAN Rui4, LIN Wei1,2, ZHANG Juan1,2   

  1. 1. College of Geosciences, Yangtze University, Wuhan 430100, China;
    2. Laboratory of Reservoir Microstructure Evolution and Digital Characterization, Wuhan 430100, China;
    3. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Wuhan 430100, China;
    4. School of Information and Mathematics, Yangtze University, Jingzhou 434023, Hubei, China
  • Received:2021-11-17 Revised:2021-12-30 Online:2022-05-01 Published:2022-05-12

Abstract: The Cretaceous Bashijiqike Formation in Kuqa Depression of Tarim Basin is a typical ultra-deep fracture-pore sandstone reservoir. The properties,stages and sources of pore-fracture carbonate fluid in Cretaceous Bashijiqike Formation in Keshen well block of Kuqa Depression were comparatively analyzed by means of observation of thin sections and cathode-luminescence analysis of carbonate veins and carbonate cements in pores. The results show that:(1)There were two-stage calcite cements and two-stage dolomite cements in the pores of Cretaceous Bashijiqike Formation in Keshen well block,Kuqa Depression. The fractures were filled with two-stage calcite veins and one-stage dolomite veins.(2)The phase Ⅱ calcite cements existed in the pores and the phase Ⅰ calcite veins filled in the fractures of Cretaceous Bashijiqike Formation in the study area are orange-yellow in cathodoluminescence,and they have similar REE distribution patterns(LREE enrichment, HREE loss, weak negative δCe anomaly,positive δEu anomaly),indicating that there are simultaneous homologous fluids in the pores and fractures. The fluid cementation at that stage tends to occur in fractures,which plays a constructive role in the preservation of pores around the fractures.

Key words: carbonate cements, clastic reservoir, fracture, pore, Bashijiqike Formation, Cretaceous, Keshen well block, Kuqa Depression

CLC Number: 

  • TE122.1
[1] 孙海涛,钟大康,李勇,等.超深低孔特低渗砂岩储层的孔隙成因及控制因素:以库车坳陷克深地区巴什基奇克组为例[J].吉林大学学报(地球科学版), 2018, 48(3):693-704. SUN Haitao, ZHONG Dakang, LI Yong, et al. Porosity origin and controlling factors of ultra-deep, low porosity and ultra-low permealility sandatone reservoirs:A case study of Bashijiqike Formation in Keshen area of Kuqa Depression, Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3):693-704.
[2] 任大忠,张晖,周然,等.塔里木盆地克深地区巴什基奇克组致密砂岩储层敏感性研究[J].岩性油气藏, 2018, 30(6):27-36. REN Dazhong, ZHANG Hui, ZHOU Ran, et al. Sensitivity of tight sandstone reservoir of Bashijiqike Formation in Keshen area, Tarim Basin[J]. Lithologic Reservoirs, 2018, 30(6):27-36.
[3] 张惠良,张荣虎,杨海军,等.超深层裂缝-孔隙型致密砂岩储集层表征与评价:以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发, 2014, 41(2):158-167. ZHANG Huiliang, ZHANG Ronghu, YANG Haijun, et al. Characterization and evaluation of ultra-deep fracture-pore tight sandstone reservoirs:A case study of Cretaceous Bashijiqike Formation in Kelasu tectonic zone in Kuqa foreland basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014, 41(2):158-167.
[4] 杨海军,张荣虎,杨宪彰,等.超深层致密砂岩构造裂缝特征及其对储层的改造作用:以塔里木盆地库车坳陷克深气田白垩系为例[J].天然气地球科学, 2018, 29(7):942-950. YANG Haijun, ZHANG Ronghu, YANG Xianzhang, et al. Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir:A case study of Keshen Gasfield, Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(7):942-950.
[5] 丁文龙,王兴华,胡秋嘉,等.致密砂岩储层裂缝研究进展[J].地球科学进展, 2015, 30(7):737-750. DING Wenlong, WANG Xinghua, HU Qiujia, et al. Progress in tight sandstone reservoir fractures research[J]. Advances in Earth Science, 2015, 30(7):737-750.
[6] 姜振学,李峰,杨海军,等.库车坳陷迪北地区侏罗系致密储层裂缝发育特征及控藏模式[J].石油学报, 2015, 36(增刊2):102-111. JIANG Zhenxue, LI Feng, YANG Haijun, et al. Development characteristics of fractures in Jurassic tight reservoir in Dibei area of Kuqa Depression and its reservoir-controlling mode[J]. Acta Petrolei Sinica, 2015, 36(Suppl 2):102-111.
[7] 袁静,李欣尧,李际,等.库车坳陷迪那2气田古近系砂岩储层孔隙构造-成岩演化[J].地质学报, 2017, 91(9):2065-2078. YUAN Jing, LI Xinyao, LI Ji, et al. Tectonic-diagenetic evolution of Paleocene tight sandstone reservoir pores in the DN2 gas field of Kuqa Depression[J]. Acta Geologica Sinica, 2017, 91(9):2065-2078.
[8] 李忠.盆地深层流体-岩石作用与油气形成研究前沿[J].矿物岩石地球化学通报, 2016, 35(5):807-816. LI Zhong. Research frontiers of fluid-rock interaction and oil-gas formation in deep-buried Basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5):807-816.
[9] 李忠,罗威,曾冰艳,等.盆地多尺度构造驱动的流体-岩石作用及成储效应[J].地球科学, 2018, 43(10):3498-3510. LI Zhong, LUO Wei, ZENG Bingyan, et al. Fluid-rock interactions and reservoir formation driven by multiscale structural deformation in basin evolution[J]. Earth Science, 2018, 43(10):3498-3510.
[10] 杨海军,李勇,唐雁刚,等.塔里木盆地克深气田成藏条件及勘探开发关键技术[J].石油学报, 2021, 42(3):399-414. YANG Haijun, LI Yong, TANG Yangang, et al. Accumulation conditions, key exploration and development technologies for Keshen gas field in Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(3):399-414.
[11] 王珂,张荣虎,王俊鹏,等.超深层致密砂岩储层构造裂缝分布特征及其成因:以塔里木盆地库车前陆冲断带克深气田为例[J].石油与天然气地质, 2021, 42(2):338-353. WANG Ke, ZHANG Ronghu, WANG Junpeng, et al. Distribution and origin of fractures in ultra-deep tight sandstone reservoirs:A case study of Keshen gas field,Kuqa foreland thrust belt, Tarim Basin[J]. Oil&Gas Geology, 2021, 42(2):338-353.
[12] STEEFEL C L, LICHTNER P. Multicomponent reactive transport in discrete fractures Ⅱ:Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site[J]. Journal of Hydrology, 1998, 209(1/2/3/4):200-224.
[13] 熊鹰,谭秀成,伍坤宇,等.碳酸盐岩储集层成岩作用中"孔隙尺寸控制沉淀"研究进展、地质意义及鄂尔多斯盆地实例[J].古地理学报, 2020, 22(4):744-760. XIONG Ying, TAN Xiucheng, WU Kunyu, et al. Research advances, geological implication and application in Ordos Basin of the"pore-size controlled precipitation "in diagenesis of carbonate rock reservoir[J]. Journal of Palaeogaography (Chinese Edition), 2020, 22(4):744-760.
[14] 王珂,杨海军,张惠良,等.超深层致密砂岩储层构造裂缝特征与有效性:以塔里木盆地库车坳陷克深8气藏为例[J].石油与天然气地质, 2018, 39(4):719-729. WANG Ke, YANG Haijun, ZHANG Huiliang, et al. Characteristics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir:A case study of Keshen-8 gas pool in Kuqa Depression, Tarim Basin[J]. Oil&Gas Geology, 2018, 39(4):719-729.
[15] 巩磊,曾联波,杜宜静,等.构造成岩作用对裂缝有效性的影响:以库车前陆盆地白垩系致密砂岩储层为例[J].中国矿业大学学报, 2015, 44(3):514-519. GONG Lei, ZENG Lianbo, DU Yijing, et al. Influences of structural diagenesis on fracture effectiveness:A case study of the Cretaceous tight sandstone reservoirs of Luqa foreland basin[J]. Journal of China University of Mining&Technology, 2015, 44(3):514-519.
[16] 刘云龙.库车前陆冲断带白垩系储层胶结作用及对孔隙演化的影响[D].北京:中国石油大学(北京), 2016. LIU Yunlong. The cementation and impact on the porosity evolution of Cretaceous reservoir in Kuqa foreland thrust belt[D]. Beijing:China University of Petroleum (Beijing), 2016.
[17] 罗威,倪玲梅.致密砂岩有效储层形成演化的主控因素:以库车坳陷巴什基奇克组砂岩储层为例[J].断块油气田, 2020, 27(1):7-12. LUO Wei, NI Lingmei. Main controlling factors of formation and evolution of effective reservoir in tight sandstone:Taking Bashijiqike Formation sandstone reservoir in Kuqa Depression as an example[J]. Fault-Block Oil&Gas Field, 2020, 27(1):7-12.
[18] 刘芬,朱筱敏,潘荣,等.低渗透储层形成及库车坳陷实例分析[J].岩性油气藏, 2014, 26(3):28-37. LIU Fen, ZHU Xiaomin, PAN Rong, et al. Formation of low permeability reservoir and typical case analysis in Kuqa Depression[J]. Lithologic Reservoirs, 2014, 26(3):28-37.
[19] 王华超,韩登林,欧阳传湘,等.库车坳陷北部阿合组致密砂岩储层特征及主控因素[J].岩性油气藏, 2019, 31(2):115-123. WANG Huachao, HAN Denglin, OUYANG Chuanxiang, et al. Characteristics and main controlling factors of tight sandstone reservoir of Ahe Formation in northern Kuqa Depression[J]. Lithologic Reservoirs, 2019, 31(2):115-123.
[20] 袁纯,张惠良,王波.大型辫状河三角洲砂体构型与储层特征:以库车坳陷北部阿合组为例[J].岩性油气藏, 2020, 32(6):73-84. YUAN Chun, ZHNAG Huiliang, WANG Bo. Sand body configuration and reservoir characteristics of large braided river delta:A case study of Ahe Formation in northern Kuqa Depression, Tarim Basin[J]. Lithologic Reservoirs, 2020, 32(6):73-84.
[21] 王珂,杨海军,李勇,等.库车坳陷克深气田致密砂岩储层构造裂缝形成序列与分布规律[J].大地构造与成矿学, 2020, 44(1):30-46. WANG Ke, YANG Haijun, LI Yong, et al. Formation sequence and distribution of structural fractures in compact sandstone reservoir of Keshen gas field in Kuqa Depression, Tarim Basin[J]. Geotectonica et Metallogenia, 2020, 44(1):30-46.
[22] 张荣虎,杨海军,王俊鹏,等.库车坳陷超深层低孔致密砂岩储层形成机制与油气勘探意义[J].石油学报, 2014, 35(6):1057-1069. ZHANG Ronghu, YANG Haijun, WANG Junpeng, et al. The formation mechanism and exploration significance of ultra-deep, low-permeability and tight sandstone reservoirs in Kuqa Depression, Tarim Basin[J]. Acta Petrolei Sinica, 2014, 35(6):1057-1069.
[23] 王代富,罗静兰,陈淑慧,等.珠江口盆地白云凹陷深层砂岩储层中碳酸盐胶结作用及成因探讨[J].地质学报, 2017, 91(9):2079-2090. WANG Daifu, LUO Jinglan, CHEN Shuhui, et al. Carbonate cementation and origin analysis of deep sandstone reservoirs in the Baiyun Sag, Pearl River Mouth Basin[J]. Acta Geologica Sinica, 2017, 91(9):2079-2090.
[24] 能源,李勇,谢会文,等.库车前陆盆地盐下冲断带构造变换特征[J].新疆石油地质, 2019, 40(1):54-60. NENG Yuan, LI Yong, XIE Huiwen, et al. Tectonic transformation characteristics of subsalt thrust belts in Kuqa foreland basin[J]. Xinjiang Petroleum Geology, 2019, 40(1):54-60.
[25] 杨克基,漆家福,马宝军,等.库车坳陷克拉苏构造带盐上和盐下构造变形差异及其控制因素分析[J].大地构造与成矿学, 2018, 42(2):211-224. YANG Keji, QI Jiafu, MA Baojun, et al. Differential tectonic deformation of subsalt and suprasalt strata in Kuqa Depression and their controlling factors[J]. Geotectonica et Metallogenia, 2018, 42(2):211-224.
[26] 曾庆鲁,张荣虎,张亮,等.塔里木盆地西南坳陷下白垩统沉积相与储集层差异演化特征[J].天然气地球科学, 2020, 31(10):1375-1388. ZENG Qinglu, ZHANG Ronghu, ZHANG Liang, et al. Sedimentary facies and reservoir evolution divergence of early Cretaceous sandstones in southwest depression of Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(10):1375-1388.
[27] HU Zhaochu, ZHANG Wen, LIU Yongsheng, et al. A novel "wave" signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis:Application to lead isotope analysis[J]. Analytical Chemistry, 2015, 87(2):1152-1157.
[28] 林治家,陈多福,刘芊.海相沉积氧化还原环境的地球化学识别指标[J].矿物岩石地球化学通报, 2008, 27(1):72-80. LIN Zhijia, CHEN Duofu, LIU Qian. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1):72-80.
[29] JAMES R F, ALEDEN B C, THOMAS W O. Cathodoluminescence and composition of calcite cement in the Taum Sauk Limestone (Upper Cambrian), southeast Missouri[J]. Journal of Sedimentary Petrology, 1982, 52(2):631-638.
[30] 黄思静,卿海若,胡作维,等.川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用[J].地球科学——中国地质大学学报, 2008, 33(1):26-34. HUANG Sijing, QING Hairuo, HU Zuowei, et al. Cathodoluminescence and diagenesis of the carbonate rocks in Feixianguan Formation of Triassic, eastern Sichuan Basin of China[J]. Earth Science-Journal of China University of Geosciences, 2008, 33(1):26-34.
[31] MICHAEL B. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 1991, 93(34):219-230.
[32] LOTTERMOSE B G. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology Reviews, 1992, 7(1):25-41.
[33] 郭小文,陈家旭,袁圣强,等.含油气盆地激光原位方解石U-Pb年龄对油气成藏年代的约束:以渤海湾盆地东营凹陷为例[J].石油学报, 2020, 41(3):284-291. GUO Xiaowen, CHEN Jiaxu, YUAN Shengqiang, et al. Constraint of in-situ calcite U-Pb dating by laser ablation on geochronology of hydrocarbon accumulation in petroliferous basins:A case study of Dongying Sag in the Bohai Bay Basin[J]. Acta Petrolei Sinica, 2020, 41(3):284-291.
[34] 赵彦彦,李三忠,李达,等.碳酸盐(岩)的稀土元素特征及其古环境指示意义[J].大地构造与成矿学, 2019, 43(1):141-167. ZHAO Yanyan, LI Sanzhong, LI Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1):141-167.
[35] 毛亚昆,钟大康,能源,等.库车前陆冲断带白垩系储层流体包裹体特征与油气成藏[J].中国矿业大学学报, 2015, 44(6):1033-1042. MAO Yakun, ZHONG Dakang, NENG Yuan, et al. Fluid inclusion characteristics and hydrocarbons accumulation of the Cretaceous reservoirs in Kuqa foreland thrust belt, Tarim Basin, northwest China[J]. Journal of China University of Mining&Technology, 2015, 44(6):1033-1042.
[36] 毛亚昆.库车坳陷前陆冲断带下白垩统砂岩储层孔隙演化模式[D].北京:中国石油大学(北京), 2019. MAO Yakun. Pore evolution model of lower cretaceous sandstone reservoir in foreland thrust belt of Kuqa Depression[D]. Beijing:China University of Petroleum (Beijing), 2019.
[37] 李玲,唐洪明,王茜,等.克拉苏冲断带克深区带白垩系超深储集层成岩演化[J].新疆石油地质, 2017, 38(1):7-14. LI Ling, TANG Hongming, WANG Xi, et al. Diagenetic evolution of Cretaceous ultra-deep reservoir in Keshen belt, Kelasu thrust belt, Kuqa Depression[J]. Xinjiang Petroleum Geology, 2017, 38(1):7-14.
[38] LI Ling, TANG Hongming, WANG Xi, et al. Evolution of diagenetic fluid of ultra-deep Cretaceous Bashijiqike Formation in Kuqa Depression[J]. Journal of Central South University, 2018, 25(10):2472-2495.
[39] 孙可欣,李贤庆,魏强,等.库车坳陷克深大气田白垩系致密砂岩储层古流体地球化学特征研究[J].现代地质, 2019, 33(6):1220-1228. SUN Kexin, LI Xianqing, WEI Qiang, et al. Geochemical characteristics of paleo-fluid in tight sandstone from Cretaceous reservoir in Keshen large gas field, Kuqa Depression[J]. Geoscience, 2019, 33(6):1220-1228.
[40] 张月,韩登林,杨铖晔,等.超深层碎屑岩储层裂缝充填流体迁移规律:以库车坳陷克深井区白垩系巴什基奇克组为例[J].石油学报, 2020, 41(3):292-300. ZHANG Yue, HAN Denglin, YANG Chengye, et al. Migration law of fracture filling fluid in ultra-deep clastic reservoirs:A case study of the Cretaceous Bashijiqike Formation in Keshen well block, Kuqa Depression[J]. Acta Petrolei Sinica, 2020, 41(3):292-300.
[1] RAN Yixuan, WANG Jian, ZHANG Yi. Favorable exploration area and formation condition of bedrock reservoir in the of central paleo-uplift,northern Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(6): 66-76.
[2] QU Weihua, TIAN Ye, DONG Changchun, GUO Xiaobo, LI Lili, LIN Siya, XUE Song, YANG Shihe. Characteristics of Cretaceous source rocks and their controlling effect on hydrocarbon accumulation in Dehui Fault Depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(6): 122-134.
[3] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[4] YAN Xueying, SANG Qin, JIANG Yuqiang, FANG Rui, ZHOU Yadong, LIU Xue, LI Shun, YUAN Yongliang. Main controlling factors for the high yield of tight oil in the Jurassic Da’anzhai Section in the western area of Gongshanmiao, Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(6): 98-109.
[5] LI Daoqing, CHEN Yongbo, YANG Dong, LI Xiao, SU Hang, ZHOU Junfeng, QIU Tingcong, SHI Xiaoqian. Intelligent comprehensive prediction technology of coalbed methane “sweet spot”reservoir of Jurassic Xishanyao Formation in Baijiahai uplift,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 23-35.
[6] SU Hao, GUO Yandong, CAO Liying, YU Chen, CUI Shuyue, LU Ting, ZHANG Yun, LI Junchao. Natural depletion characteristics and pressure maintenance strategies of faultcontrolled fracture-cavity condensate gas reservoirs in Shunbei Oilfield [J]. Lithologic Reservoirs, 2024, 36(5): 178-188.
[7] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[8] KONG Lingfeng, XU Jiafang, LIU Ding. Pore structure characteristics and dehydration evolution of lignite reservoirs of Jurassic Xishanyao Formation in Santanghu Basin [J]. Lithologic Reservoirs, 2024, 36(5): 15-24.
[9] WANG Hongxing, HAN Shiwen, HU Jia, PAN Zhihao. Prediction and main controlling factors of tuff reservoirs of Cretaceous Huoshiling Formation in Dehui fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(5): 35-45.
[10] ZHOU Hongfeng, WU Haihong, YANG Yuxi, XIANG Hongying, GAO Jihong, HE Haowen, ZHAO Xu. Sedimentary characteristics of fan delta front of the fourth member of Cretaceous A’ershan Formation in Bayindulan Sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(4): 85-97.
[11] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[12] TIAN Ya, LI Junhui, CHEN Fangju, LI Yue, LIU Huaye, ZOU Yue, ZHANG Xiaoyang. Tight reservoir characteristics and favorable areas prediction of Lower Cretaceous Nantun Formation in central fault depression zone of Hailar Basin [J]. Lithologic Reservoirs, 2024, 36(4): 136-146.
[13] ZHU Biao, ZOU Niuniu, ZHANG Daquan, DU Wei, CHEN Yi. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area,northern Guizhou [J]. Lithologic Reservoirs, 2024, 36(4): 147-158.
[14] TANG Shukai, GUO Tiankui, WANG Haiyang, CHEN Ming. Numerical simulation of fracture propagation law of in-fracture temporary plugging and diverting fracturing in tight reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 169-177.
[15] XU Tianlu, WU Chengmei, ZHANG Jinfeng, CAO Aiqiong, ZHANG Teng. Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2024, 36(4): 35-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: