Lithologic Reservoirs ›› 2012, Vol. 24 ›› Issue (3): 39-44.doi: 10.3969/j.issn.1673-8926.2012.03.008

Previous Articles     Next Articles

Sequence stratigraphy framework of Qing 1 and Qing 2 members in the western slope of southern Songliao Basin and its control effect on reservoir sand bodies

ZHOU Zhan1, FENG Dong1, WANG Hongliang1, ZHOU Hongfei1, WANG Qiming2   

  1. 1. Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, Ministry of Education, China University of Geosciences, Beijing 100083, China; 2. CNOOC Tianjin Company, Tianjin 300452, China
  • Online:2012-06-20 Published:2012-06-20

Abstract:

In order to study the formation mechanism and distribution of the sand bodies developed in Qing 1 and Qing 2 members of Upper Cretaceous in Songliao Basin, with the application of the principle of high resolution sequence stratigraphy, sequence boundary marks were determined and a kind of sequence boundaries of shift surface of deposition were identified according to core, drilling/logging and seismic data. According to the research of sequence boundaries, one long-term base level cycle and three medium-term base level cycles were recognized in the target formations. Based on stacking modes of medium-term to long-term base-level cycles, the stratum mode of medium-term base level cycles is symmetry, but the stratum mode of long-term base level cycles is mainly composed of rising half cycle which composed rising asymmetry cycle configuration. Sedimentary facies and the distribution of sand bodies are mainly controlled by the change of base level. The delta front sand bodies are distributed in the rising and falling stage of medium-term base level cycles, and the turbidity sand bodies are only distributed in the rising stage of medium-term base level cycles. This understanding will be favorable for oil and gas exploration in the study area.

Key words: deep heavy oil, natural gas huff and puff, numerical simulation, parameter optimization, test results, Tuyuke Oilfield

[1] 王永春.松辽盆地南部岩性油藏的形成条件与分布[M].北京:石油工业出版社,2001:1-2.
[2] 江涛,唐振兴,党立宏,等.松辽盆地南部岩性油藏勘探潜力及技术对策[J].中国石油勘探,2006,11(3):24-29.
[3] 张永旺,曾溅辉,邓宏文,等.松辽盆地南部海坨子—大布苏地区青山口组沉积微相研究[J].地层学杂志,2009,33(1):104-112.
[4] 赵志魁,张金亮,赵占银,等.松辽盆地南部坳陷湖盆沉积相和储层研究[M].北京:石油工业出版社,2009:16-19.
[5] 辛仁臣,王英民.松辽盆地北部青山口—姚家组西部坡折带成因及演化[J].地球科学———中国地质大学学报,2004,29(3):621-624.
[6] 宋传春.地震-地质综合研究方法述评[J].岩性油气藏,2010,22(2):133-139.
[7] 杨杰,卫平生,李相博.石油地震地质学的基本概念、内容和研究方法[J].岩性油气藏,2010,22(1):1-6.
[8] 邓宏文,王红亮,祝永军,等.高分辨率层序地层学:原理及应用[M].北京:地质出版社,2002:16-22.
[9] 王洪亮,邓宏文.地层基准面原理在湖相储层预测中的应用[J].石油与天然气地质,1997,18(2):96-102.
[10] 邓宏文.美国层序地层研究中的新学派———高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89-97.
[11] 郑荣才,王海红,韩永林,等.鄂尔多斯盆地姬塬地区长6 段沉积相特征和砂体展布[J].岩性油气藏,2008,20(3):21-26.
[12] 王红亮,夏志远,李世臻,等.松辽盆地南部大布苏地区青山口组高频层序沉积微相分析与岩性圈闭预测[J].现代地质,2009,23(5):776-782.
[13] 唐振兴,杨光,黄铭志,等.海坨子—大布苏地区青三段砂体沉积机制与岩性油藏[J].岩性油气藏,2007,19(2):50-52.
[14] 杜江峰,刘招君,董清水,等.松辽盆地南部西部斜坡区晚白垩世坳陷盆地坡折带研究[J].吉林大学学报:地球科学版,2005,35(2):170 -175.
[1] CUI Chuanzhi, LI Jing, WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption [J]. Lithologic Reservoirs, 2024, 36(6): 181-188.
[2] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[3] BAO Hanyong, LIU Chao, GAN Yuqing, XUE Meng, LIU Shiqiang, ZENG Lianbo, MA Shijie, LUO Liang. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 14-22.
[4] YANG Zhaochen, LU Yingbo, YANG Guo, HUANG Chun, YI Dalin, JIA Song, WU Yongbin, WANG Guiqing. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil [J]. Lithologic Reservoirs, 2024, 36(1): 178-184.
[5] LI Fengfeng, NI Xiaowei, XU Sihui, WEI Xinlu, LIU Diren. Response characteristics and correction of LWD laterolog in anisotropic formations and deviated boreholes [J]. Lithologic Reservoirs, 2023, 35(3): 161-168.
[6] Lü Dongliang, YANG Jian, LIN Liming, ZHANG Kaili, CHEN Yanhu. Characterization model of oil-water relative permeability curves of sandstone reservoir and its application in numerical simulation [J]. Lithologic Reservoirs, 2023, 35(1): 145-159.
[7] ZHANG Wei, LI Lei, QIU Xinwei, GONG Guangchuan, CHENG Linyan, GAO Yifan, YANG Zhipeng, YANG Lei. A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: A case study of Paleogene Wenchang Formation in Lufeng 22 subsag,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(3): 131-141.
[8] DONG Min, GUO Wei, ZHANG Linyan, WU Zhonghai, MA Licheng, DONG Hui, FENG Xingqiang, YANG Yuehui. Characteristics of paleotectonic stress field and fractures of WufengLongmaxi Formation in Luzhou area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 43-51.
[9] ZHANG Haoyu, LI Mao, KANG Yongmei, WU Zemin, WANG Guang. Reservoir architecture and fine characterization of remaining oil of Chang 3 reservoir in Zhenbei oilfield,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 177-188.
[10] ZHU Suyang, LI Dongmei, LI Chuanliang, LI Huihui, LIU Xiongzhi. Re-discussion on principle of constant porosity during primary deformation of rock [J]. Lithologic Reservoirs, 2021, 33(2): 180-188.
[11] LIU Mingming, WANG Quan, MA Shou, TIAN Zhongzheng, CONG Yan. Well placement optimization of coalbed methane based on hybrid particle swarm optimization algorithm [J]. Lithologic Reservoirs, 2020, 32(6): 164-171.
[12] LI Zihan, HE Yufa, ZHANG Binhai, ZHONG Haiquan. Solution and realization of coupled model of temperature and pressure field in deep water gas well testing [J]. Lithologic Reservoirs, 2020, 32(4): 163-171.
[13] GUAN Hua, GUO Ping, ZHAO Chunlan, TAN Baoguo, XU Dongmei. Mechanism of nitrogen flooding in Yong 66 block of Yong'an Oilfield,Bohai Bay Basin [J]. Lithologic Reservoirs, 2020, 32(2): 149-160.
[14] LUO Zhifeng, HUANG Jingyun, HE Tianshu, HAN Mingzhe, ZHANG Jintao. Extending regularity of fracture height by acid fracturing in carbonate reservoir: a case study of Qixia Formation in western Sichuan [J]. Lithologic Reservoirs, 2020, 32(2): 169-176.
[15] ZHOU Rui, SU Yuliang, MA Bing, ZHANG Qi, WANG Wendong. CO2 huff and puff simulation in horizontal well with random fractal volume fracturing [J]. Lithologic Reservoirs, 2020, 32(1): 161-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: