Lithologic Reservoirs ›› 2017, Vol. 29 ›› Issue (4): 73-80.doi: 10.3969/j.issn.1673-8926.2017.04.009

Previous Articles     Next Articles

Petroleum geological significance of pyrite in glutenite reservoirs:a case of Qigu Formation in Che 60 well field,Junggar Basin

XIONG Lianqiao1,2, YU Fusheng3, YAO Genshun2, GAO Chonglong3, WANG Yu4   

  1. 1. Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China;
    2. PetroChina Hangzhou Institute of Geology, Hangzhou 310023, China;
    3. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    4. No.1 Oil Production Plant, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2016-06-25 Revised:2016-09-17 Online:2017-07-21 Published:2017-07-21

Abstract: A large number of authigenic pyrites with perfect crystalline were found in the glutenite reservoirs of Jurassic Qigu Formation in Che 60 well field, northwestern margin of Junggar Basin. These pyrites were concentrated in the braided river delta sandbodies with low shale content, high oil saturation and good physical properties. However, strata with pyrite were interpreted as shale intervals in the previous studies based on the well logging interpretation, which directly led to the misunderstanding of sandbody connectivity and remaining oil distri-bution and resulted in the omission of potential oil and gas reserves in the reservoirs. Based on well longing data and core observation, identification charts of pyrite-rich sandbodies were established, and combined with the geologic settings of the study area, 3 D geological modeling technique was applied to establish the formation model of pyrite. And then porosity and pyrite content of the pyrite-rich sandbodies were recalculated through equivalent volume model. The results show that the distribution of pyrite-rich sandbodies was controlled by faults, and pyrite in the glutenite reservoirs could indicate the distribution of oil-bearing sandbodies, and these sandbodies are not shale intervals. The porosity obtained from the equivalent volume model was much closer to the data of core sample analysis than the old interpretation model. These pyrite-rich sandbodies might be the favorable accumulations of remaining oil or potential areas of reserves. This result could enrich the understanding of pyrite and it is significant for the study of remaining oil and the oilfield flooding development.

Key words: biomarker, cluster analysis, oil family division, Saihantala Sag, Erlian Basin

CLC Number: 

  • TE122.2
[1] 德勒恰提, 王威, 李宏, 等.准噶尔盆地车排子凸起侏罗系齐古组沉积相分析及储层展布——以车60井区齐古组地层-岩性油气藏为例.沉积学报, 2013, 31(3):545-552. DELEQIATI, WANG W, LI H, et al. Facies of the Jurassic Qigu Formation and distribution of reservoir in the Chepaizi uplift, Junggar Basin:a case study on Qigu Formation stratigraphiclithologic reservoirs in well Che 60 block. Acta Sedimentologica Sinica, 2013, 31(3):545-552.
[2] 徐国风, 邵洁涟. 黄铁矿的标型特征及其实际意义. 地质论评, 1980, 26(6):541-546. XU G F, SHAO J L. Implications and typomorphic characteristics of pyrite. Geological Review, 1980, 26(6):541-546.
[3] 姜冬冬, 陈萍, 唐修义, 等.淮南煤田8煤层中黄铁矿的特征研究及成因分析.中国煤炭地质, 2008, 21(1):22-26. JIANG D D, CHEN P, TANG X Y, et al. Characteristic study and geological genesis analysis of pyrite in No. 8 coal in Huainan Coalfield. Coal Geology of China, 2008, 21(1):22-26.
[4] 沈明道, 狄明信.矿物岩石学及沉积相简明教程.青岛:中国石油大学出版社, 2007:70. SHEN M D, DI M X. Brief tutorial of mineralogy petrology and sedimentary facies. Qingdao:China University of Petroleum Press, 2007:70.
[5] 徐祖新, 韩淑敏, 王启超.中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义.岩性油气藏, 2015, 27(2):31-37. XU Z X, HAN S M, WANG Q C. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in middle Yangtze area. Lithologic Reservoirs, 2015, 27(2):31-37.
[6] WILKIN R T, BARNES H L, BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments:an indicator of redox conditions. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912.
[7] TRIPATHI S C. Framboidal pyrite from Mussoorie phosphorite and its geological implication. Journal of Earth System Science, 1985, 94(3):315-321.
[8] WILKIN R T, BARNES H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 1996, 60(21):4167-4179.
[9] 蔡春芳, 邬光辉, 李开开, 等.塔中地区古生界热化学硫酸盐还原作用与原油中硫的成因.矿物岩石地球化学通报, 2007, 26(1):44-48. CAI C F, WU G H, LI K K, et al. Thermochemical sulfate reduction and origin of sulfur in crude oil in Palaeozoic carbonates. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(1):44-48.
[10] 李开开, 蔡春芳, 蔡镏璐, 等.塔河地区中下奥陶统储层硫化物成因分析.岩石学报, 2012, 28(3):806-814. LI K K, CAI C F, CAI L L, et al. Origin of sulfides in the Middle and Lower Ordovician carbonates in Tahe Oilfield, Tarim Basin. Acta Petrologica Sinica, 2012, 28(3):806-814.
[11] 王晓洁, 张世奇, 魏孟吉, 等.东濮凹陷文东地区沙三段黄铁矿特征及形成模式.断块油气田, 2015, 22(2):178-183. WANG X J, ZHANG S Q, WEI M J, et al. Characteristics and formation mode of Es3member pyrite in Wendong area of Dongpu Depression. Fault-block Oil & Gas Field, 2015, 22(2):178-183.
[12] ZHANG J, LIANG H D, HE X Q, et al. Sulfur isotopes of framboidal pyrite in the Permian-Triassic boundary clay at Meishan section. Acta Geologica Sinica(English Edition), 2011, 85(3):694-701.
[13] BERNER R A. Sedimentary pyrite formation:an update. Geochimica et Cosmochimica Acta, 1984, 48(4):605-615.
[14] BARNARD A S, RUSSO S P. Morphological stability of pyrite FeS2 nanocrystals in water. The Journal of Physical Chemistry C, 2009, 113(14):5376-5380.
[15] 张美, 孙晓明, 芦阳, 等.南海台西南盆地自生管状黄铁矿矿物学特征及其对天然气水合物的示踪意义.矿床地质, 2011, 30(4):725-734. ZHANG M, SUN X M, LU Y, et al. Mineralogy of authigenic tube pyrite from the southwest Taiwan Basin of South China Sea and its tracing significance for gas hydrates. Mineral Deposits, 2011, 30(4):725-734.
[16] 窦春霞, 唐新功, 向葵, 等.筇竹寺组和龙马溪组页岩弹性与复电阻率特性研究.岩性油气藏, 2016, 28(1):111-116. DOU C X, TANG X G, XIANG K, et al. Elastic and electrical properties of shales from Qiongzhusi and Longmaxi Formation. Lithologic Reservoirs, 2016, 28(1):111-116.
[17] CLAVIER C, HEIM A, SCALA C. Effect of pyrite on resistivity and other logging measurements. SPWLA 17 th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, Denver, Colorado, 1976:1-34.
[18] 肖芳锋, 侯贵廷, 王延欣, 等.准噶尔盆地及周缘二叠纪以来构造应力场解析.北京大学学报(自然科学版), 2010, 46(2):224-230. XIAO F F, HOU G T, WANG Y X, et al. Study on structural stress fields since Permian, Junggar Basin and adjacent area. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(2):224-230.
[19] 徐兴友.准噶尔盆地车排子地区油气成藏期次研究.石油天然气学报(江汉石油学院学报), 2008, 30(3):40-44. XU X Y. Hydrocarbon entrapment of Chepaizi area in Junggar Basin. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute), 2008, 30(3):40-44.
[20] 赵爱文, 王振奇, 李伟强.准噶尔盆地西北缘红车断裂带油气来源与成藏模式.西安石油大学学报(自然科学版), 2015, 30(5):16-22. ZHAO A W, WANG Z Q, LI W Q. Hydrocarbon sources and accumulation modes of Hongche fault zone in the northwestern margin of Junggar Basin. Journal of Xi' an Shiyou University (Natural Science Edition), 2015, 30(5):16-22.
[21] 探测和分析黄铁矿对现代测井技术的影响.唐宇, 译.测井技术信息, 2005, 18(6):45-51. Detection and analysis of the pyrite effects on the modern welllogging technology. TANG Y, trans. Well Logging Technology Information, 2005, 18(6):45-51.
[22] 吴胜和.储层表征与建模.北京:石油工业出版社, 2010. WU S H. Reservoir characterization & modeling. Beijing:Petroleum Industry Press, 2010.
[23] 李宏, 黄建良, 陈剑, 等.车排子油田车60井区块J3q, K1q, 车35井区块J3q, J2 x, J1b, 车503、车峰19井区块N1s油藏新增石油探明储量.中国石油新疆油田分公司, 2011. LI H, HUANG J L, CHEN J, et al. New proven oil reserves of J3q and K1q in well Che 60 block, J3q, J2 x and J1b in well Che 35 block, well Che 503 and N1s in well Chefeng 19 block. PetroChina Xinjiang Oilfield Company, 2011.
[24] 张冲, 张占松, 张超谟.基于等效岩石组分理论的渗透率解释模型.测井技术, 2014, 38(6):690-694. ZHANG C, ZHANG Z S, ZHANG C M. A permeability interpretation model based on equivalent rock elements theory. Well Logging Technology, 2014, 38(6):690-694.
[1] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[2] CHENG Yan, WANG Bo, ZHANG Tongyao, QI Yumin, YANG Jilei, HAO Peng, LI Kuo, WANG Xiaodong. Oil and gas migration characteristics of lithologic reservoirs of Neogene Minghuazhen Formation in Bozhong A-2 area,Bozhong Sag [J]. Lithologic Reservoirs, 2024, 36(5): 46-55.
[3] ZHOU Hongfeng, WU Haihong, YANG Yuxi, XIANG Hongying, GAO Jihong, HE Haowen, ZHAO Xu. Sedimentary characteristics of fan delta front of the fourth member of Cretaceous A’ershan Formation in Bayindulan Sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(4): 85-97.
[4] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[5] ZHANG Xiaoqin, LI Wei, WANG Feilong, WANG Ning, XU Yaohui, LIU Yan, CHENG Rujiao, LIU Huaqiu. Biomarker characteristics and geological significance of Paleogene source rocks in Liaodong Bay [J]. Lithologic Reservoirs, 2022, 34(1): 73-85.
[6] YAO Haipeng, YU Dongfang, LI Ling, LIN Haitao. Adsorption characteristics of typical coal reservoirs in Inner Mongolia [J]. Lithologic Reservoirs, 2021, 33(2): 1-8.
[7] NING Congqian, ZHOU Mingshun, CHENG Jie, SU Rui, HAO Peng, WANG Min, PAN Jingli. Application of 2D NMR logging in fluid identification of glutenite reservoir [J]. Lithologic Reservoirs, 2021, 33(1): 267-274.
[8] UANG Jie, DU Yuhong, WANG Hongmei, GUO Jia, SHAN Xiaokun, MIAO Xue, ZHONG Xinyu, ZHU Yushuang. Characteristics of micro pore structure and movable fluid of extra-low permeability reservoir: a case study of lower Et1 reservoir in A'er Sag,Erlian Basin [J]. Lithologic Reservoirs, 2020, 32(5): 93-101.
[9] WANG Jianjun, LI Jingliang, LI Lin, MA Guangchun, DU Yue, JIANG Yiming, LIU Xiao, YU Yinhua. Fracture prediction and modeling based on poststack 3D seismic data: a case study of shallow shale gas reservoir in Taiyang-Dazhai area [J]. Lithologic Reservoirs, 2020, 32(5): 122-132.
[10] SHAN Xinjie, WANG Feiyu, LIU Nian, FENG Weiping, JIANG Tao, DU Xi, CHENG Zhiqiang, LI Sijia, LI Yue. Distribution characteristics and oil-source analysis of Lower Cretaceous source rock in southern trough of Hurenbuqi sag,Erlian Basin [J]. Lithologic Reservoirs, 2020, 32(3): 104-114.
[11] JIN Qiuyue. Genesis types and accumulation characteristics of crude oil in southeast slope of Weixinan Depression,Beibuwan Basin [J]. Lithologic Reservoirs, 2020, 32(1): 11-18.
[12] ZHANG Yiming, CHEN Shuguang, CUI Yongqian, TIAN Jianzhang, WANG Xin, WANG Menghua. Lithofacies distribution and reservoir prediction of andesite in Wulanhua Sag, Erlian Basin [J]. Lithologic Reservoirs, 2018, 30(6): 1-9.
[13] WEIWei, ZHU Xiaomin, ZHU Shifa, HE Mingwei, WU Jianping, WANG Mingwei. Lithofacies and reservoir space characteristics of the tuffaceoussiliciclastic mixed rocks of the Lower Cretaceous Tenggeer Formation in Anan Sag, Erlian Basin [J]. Lithologic Reservoirs, 2017, 29(2): 68-76.
[14] ZHAO Xianzheng, WANG Quan, DAN Weining, WANG Wenying, QIAO Xiaoxia, REN Chunling. Exploration discovery and prospects of Cretaceous stratigraphic-lithologic reservoirs in Erlian Basin [J]. Lithologic Reservoirs, 2017, 29(2): 1-9.
[15] XIAO Yang, ZHANG Shaohua, WEI Yan, YANG Minghui, CHEN Yuting, PAN Juan. Structural characteristics of the boundary fault and its control on hydrocarbon accumulation in Saihantala Sag, Erlian Basin [J]. Lithologic Reservoirs, 2017, 29(2): 44-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: