岩性油气藏 ›› 2018, Vol. 30 ›› Issue (2): 77–84.doi: 10.12108/yxyqc.20180209

• 油气地质 • 上一篇    下一篇

基于氩气吸附的页岩纳米级孔隙结构特征

朱汉卿, 贾爱林, 位云生, 贾成业, 金亦秋, 袁贺   

  1. 中国石油勘探开发研究院, 北京 100083
  • 收稿日期:2017-09-01 修回日期:2017-10-25 出版日期:2018-03-21 发布日期:2018-03-21
  • 作者简介:朱汉卿(1990-),男,中国石油勘探开发研究院在读博士研究生,研究方向为非常规页岩气地质评价。地址:(100083)北京市海淀区学院路20号中国石油勘探开发研究院气田开发研究所。Email:jsdfzhq2005@163.com。
  • 基金资助:
    国家重大科技专项“大型油气田及煤层气开发”(编号:2016ZX05062与2016ZX05037)和“页岩气生产规律表征与开发技术政策优化”(编号:2017ZX5037002)联合资助

Nanopore structure characteristics of shale based on Ar adsorption

ZHU Hanqing, JIA Ailin, WEI Yunsheng, JIA Chengye, JIN Yiqiu, YUAN He   

  1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • Received:2017-09-01 Revised:2017-10-25 Online:2018-03-21 Published:2018-03-21

摘要: 为了研究页岩储层微观孔隙结构特征,以川南地区龙马溪组页岩为研究对象,应用场发射扫描电镜(FE-SEM)定性描述页岩镜下孔隙形态及确定其类型,创新使用低温氩气(Ar)吸附实验测量页岩样品的比表面积、孔体积以及孔径分布,实现了页岩小于100 nm(纳米级)孔隙的连续测量,并根据FrenkelHalsey-Hill(FHH)模型研究了页岩孔隙结构的分形特征,探讨了有机质对页岩孔隙结构及分形特征的影响。结果表明:川南地区龙马溪组页岩储层主要发育有机质孔、粒间孔及粒内孔,并以有机质孔为主。Ar吸附等温线表明,纳米级孔隙以狭缝型为主,孔径主体分布在10 nm以下的微孔和介孔中,呈“三峰”特征,微孔主要集中在0.6~0.9 nm以及1.8~2.0 nm,介孔主要集中在4.0~5.0 nm。纳米级孔隙分形维数为2.55~2.64,表现出较强的非均质性。有机碳(TOC)含量控制了页岩纳米级孔隙的发育,TOC含量的增加使得页岩中微孔及其所占比例增高,分形维数增大,孔隙结构趋于复杂,有利于页岩储层吸附能力的增强。该研究成果对川南地区龙马溪组页岩储层纳米级孔隙结构特征研究具有重要意义。

Abstract: The microscopic pore structure has direct effect on gas bearing property of shale. Field emission scanning electron microscope (FE-SEM)was applied to describe pore morphology and types qualitatively of Longmaxi shale samples in south Sichuan Basin. Low temperature Ar adsorption experiment was carried out to measure the specific surface area (SSA), pore volume (PV) and pore size distribution (PSD) of the shale samples, and the continuous measurement of nanopore less than 100 nm was achieved. Fractal characteristics of nanopore structure were also studied by use of Frenkel-Halsey-Hill (FHH) model, and the relationships among total organic carbon content, pore structure parameters and fractal dimensions were discussed. The result shows that organic pores, intergranular pores and intragranular pores are developed in Longmaxi shale, and organic pores are dominated. The nanopores are slit shape on the Ar adsorption isotherms, and are mainly distributed in micropores and mesopores less than 10 nm, and the micropore size is mainly 0.6-0.9 nm and 1.8-2.0 nm, while the mesopore size is mainly 4.0-5.0 nm. The fractal dimension of nanopores ranges from 2.55 to 2.64, showing strong heterogeneity. Total organic carbon content controls the development of nanopores in shales. With the increase of TOC content, the number and proportion of micropores increase, and the fractal dimension also increases. All these factors complicate the pore structure of shale samples, and enhance the gas adsorption capacity of shale reservoirs. The research results have important significance for the study of nanopore structure of Longmaxi shale reservoir in southern Sichuan Basin.

中图分类号: 

  • TE122.2
[1] 董大忠, 邹才能, 杨桦, 等.中国页岩气勘探开发进展与发展前景.石油学报, 2012, 33(增刊1):107-114. DONG D Z, ZOU C N, YANG H, et al. Progress and prospects of shale gas exploration and development in China. Acta Petrolei Sinica, 2012, 33(Suppl 1):107-114.
[2] 郭彤楼, 张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 2014, 41(1):28-36. GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin. Petroleum Exploration and Development, 2014, 41(1):28-36.
[3] 贾爱林, 位云生, 金亦秋.中国海相页岩气开发评价关键技术进展.石油勘探与开发, 2016, 43(6):1-7. JIA A L, WEI Y S, JIN Y Q. Progress in key technologies for evaluating marine shale gas development in China. Petroleum Exploration and Development, 2016, 43(6):1-7.
[4] 蒋裕强, 董大忠, 漆麟, 等.页岩气储层的基本特征及其评价. 天然气工业, 2010, 30(10):7-12. JIANG Y Q, DONG D Z, QI L, et al. Basic features and evaluation of shale gas reservoirs. Natural Gas Industry, 2010, 30(10):7-12.
[5] 刘树根, 王世玉, 孙伟, 等.四川盆地及其周缘五峰组-龙马溪组黑色页岩特征.成都理工大学学报(自然科学版), 2013, 40(6):621-638. LIU S G, WANG S Y, SUN W, et al. Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(6):621-638.
[6] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation(Devonian),Pennsylvania. AAPG Bulletin, 2013, 97(2):177-200.
[7] CURTIS M E, AMBROSE R J, SONDERGELD C H, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin, 2012, 96(4):665-677.
[8] 何建华, 丁文龙, 付景龙, 等.页岩微观孔隙成因类型研究.岩性油气藏, 2014, 26(5):30-35. HE J H, DING W L, FU J L, et al. Study on genetic type of micropore in shale reservoir. Lithologic Reservoirs, 2014, 26(5):30-35.
[9] 魏祥峰, 刘若冰, 张廷山, 等.页岩气储层微观孔隙结构特征及发育控制因素:以川南-黔北XX地区龙马溪组为例.天然气地球科学, 2013, 24(5):1048-1059. WEI X F, LIU R B, ZHANG T S, et al. Micro-pores structure characteristics and development control factors of shale gas reservoir:a case of Longmaxi formation in XX area of southern Sichuan and northern Guizhou. Natural Gas Geoscience, 2013, 24(5):1048-1059.
[10] MATTHIAS T, KATSUMI K, ALEXANDER V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9/10):1051-1069.
[11] 顾忠安, 郑荣才, 王亮, 等.渝东涪陵地区大安寨段页岩储层特征研究.岩性油气藏, 2014, 26(2):67-73. GU Z A, ZHENG R C, WANG L, et al. Characteristics of shale reservoir of Da'anzhai segment in Fuling area eastern Chongqing. Lithologic Reservoirs, 2014, 26(2):67-73.
[12] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79:848-861.
[13] 孙文峰, 李玮, 董智煜, 等.页岩孔隙结构表征方法新探索.岩性油气藏, 2017, 29(2):125-130. SUN W F, LI W, DONG Z Y, et al. A new approach to the characterization of shale pore structure. Lithologic Reservoirs, 2017, 29(2):125-130.
[14] CLARKSON C R, SOLANO N, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption,and mercury intrusion. Fuel, 2013, 103, 606-616.
[15] 杨峰, 宁正福, 张世栋, 等.基于氮气吸附实验的页岩孔隙结构表征.天然气工业, 2013, 33(4):135-140. YANG F, NING Z F, ZHANG S D, et al. Characterization of pore structures in shales through nitrogen adsorption experiment. Natural Gas Industry, 2013, 33(4):135-140.
[16] 李贤庆, 王哲, 郭曼, 等.黔北地区下古生界页岩气储层孔隙结构特征.中国矿业大学学报, 2016, 45(6):1172-1183. LI X Q, WANG Z, GUO M, et al. Pore structure characteristics of the Lower Paleozoic formation shale gas reservoir in northern Guizhou. Journal of China University of Mining & Technology, 2016, 45(6):1172-1183.
[17] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 2012, 96(6):1071-1098.
[18] PAUL C, HACKLEY. Geological and geochemical characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, south Texas:a future shale gas resource. AAPG Bulletin, 2012, 96(8):1449-1482.
[19] 武瑾, 梁峰, 吝文, 等.渝东北地区龙马溪组页岩储层微观孔隙结构特征.成都理工大学学报(自然科学版), 2016, 43(3):308-319. WU J, LIANG F, LIN W, et al. Characteristics of micropore structure of Longmaxi Formation shale gas reservoirs in northeast district of Chongqing, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(3):308-319.
[20] 吉利明, 邱军利, 夏燕青, 等.常见黏土矿物电镜扫描微孔特征与甲烷吸附性.石油学报, 2012, 33(2):249-256. JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning. Acta Petrolei Sinica, 2012, 33(2):249-256.
[21] PIETER B, KEVIN S, HELGE S, et al. On the use and abuse of N2 physisorption for the characterization of the pore structure of shales. The Clay Minerals Society Workshop Lectures Series, 2016, 21(12):151-161.
[22] HANSEN J P, SKJELTORP A T. Fractal pore space and rock permeability implications. Physical Review B:Condensed Matter Physics, 1988, 38(4):2635.
[23] YANG F, NING Z F, LIU H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 2014, 115:378-384.
[24] 杨峰, 宁正福, 王庆, 等.页岩纳米孔隙分形特征.天然气地球科学, 2014, 25(4):618-623. YANG F, NING Z F, WANG Q, et al. Fractal characteristics of nanopore in shales. Natural Gas Geoscience, 2014, 25(4):618-623.
[25] 徐勇, 吕成福, 陈俊国, 等.川东南龙马溪组页岩孔隙分形特征.岩性油气藏, 2015, 27(4):32-39. XU Y, LYU C F, CHEN J G, et al. Fractal characteristics of shale pores of Longmaxi Formation in southeast Sichuan Basin. Lithologic Reservoirs, 2015, 27(4):32-39.
[26] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage of shale gas reservoirs. Marine and Petroleum Geology, 2009, 26(6):916-927.
[27] CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia. Canada International Journal of Coal Geology, 2007, 70(1):223-239.
[1] 张文凯, 施泽进, 田亚铭, 王勇, 胡修权, 李文杰. 川东南志留系小河坝组致密砂岩孔隙类型及成因[J]. 岩性油气藏, 2021, 33(4): 10-19.
[2] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[3] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[4] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[5] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[6] 李慧莉, 尤东华, 李建交, 谭广辉, 刘士林. 麦盖提斜坡北新1井吐依洛克组角砾岩储层特征[J]. 岩性油气藏, 2021, 33(2): 26-35.
[7] 李祖兵, 崔俊峰, 宋舜尧, 成亚斌, 卢异, 陈岑. 黄骅坳陷北大港潜山中生界碎屑岩储层特征及成因机理[J]. 岩性油气藏, 2021, 33(2): 81-92.
[8] 张治恒, 田继军, 韩长城, 张文文, 邓守伟, 孙国祥. 吉木萨尔凹陷芦草沟组储层特征及主控因素[J]. 岩性油气藏, 2021, 33(2): 116-126.
[9] 陈静, 陈军, 李卉, 努尔艾力·扎曼. 准噶尔盆地玛中地区二叠系—三叠系叠合成藏特征及主控因素[J]. 岩性油气藏, 2021, 33(1): 71-80.
[10] 杨凡凡, 姚宗全, 杨帆, 德勒恰提·加娜塔依, 张磊, 曹天儒. 准噶尔盆地玛北地区三叠系百口泉组岩石物理相[J]. 岩性油气藏, 2021, 33(1): 99-108.
[11] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
[12] 袁纯, 张惠良, 王波. 大型辫状河三角洲砂体构型与储层特征——以库车坳陷北部阿合组为例[J]. 岩性油气藏, 2020, 32(6): 73-84.
[13] 冯越, 黄志龙, 李天军, 张华, 李宏伟, 周亚东. 吐哈盆地胜北洼陷七克台组二段致密油成藏条件[J]. 岩性油气藏, 2020, 32(6): 97-108.
[14] 邓猛, 邵英博, 赵军寿, 廖辉, 邓琪. 渤海A油田明化镇组下段河-坝砂体储层构型及剩余油分布[J]. 岩性油气藏, 2020, 32(6): 154-163.
[15] 芦凤明, 蔡明俊, 张阳, 倪天禄, 萧希航. 碎屑岩储层构型分级方案与研究方法探讨[J]. 岩性油气藏, 2020, 32(6): 1-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .