岩性油气藏 ›› 2018, Vol. 30 ›› Issue (2): 77–84.doi: 10.12108/yxyqc.20180209

• 油气地质 • 上一篇    下一篇

基于氩气吸附的页岩纳米级孔隙结构特征

朱汉卿, 贾爱林, 位云生, 贾成业, 金亦秋, 袁贺   

  1. 中国石油勘探开发研究院, 北京 100083
  • 收稿日期:2017-09-01 修回日期:2017-10-25 出版日期:2018-03-21 发布日期:2018-03-21
  • 第一作者:朱汉卿(1990-),男,中国石油勘探开发研究院在读博士研究生,研究方向为非常规页岩气地质评价。地址:(100083)北京市海淀区学院路20号中国石油勘探开发研究院气田开发研究所。Email:jsdfzhq2005@163.com。
  • 基金资助:
    国家重大科技专项“大型油气田及煤层气开发”(编号:2016ZX05062与2016ZX05037)和“页岩气生产规律表征与开发技术政策优化”(编号:2017ZX5037002)联合资助

Nanopore structure characteristics of shale based on Ar adsorption

ZHU Hanqing, JIA Ailin, WEI Yunsheng, JIA Chengye, JIN Yiqiu, YUAN He   

  1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • Received:2017-09-01 Revised:2017-10-25 Online:2018-03-21 Published:2018-03-21

摘要: 为了研究页岩储层微观孔隙结构特征,以川南地区龙马溪组页岩为研究对象,应用场发射扫描电镜(FE-SEM)定性描述页岩镜下孔隙形态及确定其类型,创新使用低温氩气(Ar)吸附实验测量页岩样品的比表面积、孔体积以及孔径分布,实现了页岩小于100 nm(纳米级)孔隙的连续测量,并根据FrenkelHalsey-Hill(FHH)模型研究了页岩孔隙结构的分形特征,探讨了有机质对页岩孔隙结构及分形特征的影响。结果表明:川南地区龙马溪组页岩储层主要发育有机质孔、粒间孔及粒内孔,并以有机质孔为主。Ar吸附等温线表明,纳米级孔隙以狭缝型为主,孔径主体分布在10 nm以下的微孔和介孔中,呈“三峰”特征,微孔主要集中在0.6~0.9 nm以及1.8~2.0 nm,介孔主要集中在4.0~5.0 nm。纳米级孔隙分形维数为2.55~2.64,表现出较强的非均质性。有机碳(TOC)含量控制了页岩纳米级孔隙的发育,TOC含量的增加使得页岩中微孔及其所占比例增高,分形维数增大,孔隙结构趋于复杂,有利于页岩储层吸附能力的增强。该研究成果对川南地区龙马溪组页岩储层纳米级孔隙结构特征研究具有重要意义。

Abstract: The microscopic pore structure has direct effect on gas bearing property of shale. Field emission scanning electron microscope (FE-SEM)was applied to describe pore morphology and types qualitatively of Longmaxi shale samples in south Sichuan Basin. Low temperature Ar adsorption experiment was carried out to measure the specific surface area (SSA), pore volume (PV) and pore size distribution (PSD) of the shale samples, and the continuous measurement of nanopore less than 100 nm was achieved. Fractal characteristics of nanopore structure were also studied by use of Frenkel-Halsey-Hill (FHH) model, and the relationships among total organic carbon content, pore structure parameters and fractal dimensions were discussed. The result shows that organic pores, intergranular pores and intragranular pores are developed in Longmaxi shale, and organic pores are dominated. The nanopores are slit shape on the Ar adsorption isotherms, and are mainly distributed in micropores and mesopores less than 10 nm, and the micropore size is mainly 0.6-0.9 nm and 1.8-2.0 nm, while the mesopore size is mainly 4.0-5.0 nm. The fractal dimension of nanopores ranges from 2.55 to 2.64, showing strong heterogeneity. Total organic carbon content controls the development of nanopores in shales. With the increase of TOC content, the number and proportion of micropores increase, and the fractal dimension also increases. All these factors complicate the pore structure of shale samples, and enhance the gas adsorption capacity of shale reservoirs. The research results have important significance for the study of nanopore structure of Longmaxi shale reservoir in southern Sichuan Basin.

中图分类号: 

  • TE122.2
[1] 董大忠, 邹才能, 杨桦, 等.中国页岩气勘探开发进展与发展前景.石油学报, 2012, 33(增刊1):107-114. DONG D Z, ZOU C N, YANG H, et al. Progress and prospects of shale gas exploration and development in China. Acta Petrolei Sinica, 2012, 33(Suppl 1):107-114.
[2] 郭彤楼, 张汉荣.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 2014, 41(1):28-36. GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin. Petroleum Exploration and Development, 2014, 41(1):28-36.
[3] 贾爱林, 位云生, 金亦秋.中国海相页岩气开发评价关键技术进展.石油勘探与开发, 2016, 43(6):1-7. JIA A L, WEI Y S, JIN Y Q. Progress in key technologies for evaluating marine shale gas development in China. Petroleum Exploration and Development, 2016, 43(6):1-7.
[4] 蒋裕强, 董大忠, 漆麟, 等.页岩气储层的基本特征及其评价. 天然气工业, 2010, 30(10):7-12. JIANG Y Q, DONG D Z, QI L, et al. Basic features and evaluation of shale gas reservoirs. Natural Gas Industry, 2010, 30(10):7-12.
[5] 刘树根, 王世玉, 孙伟, 等.四川盆地及其周缘五峰组-龙马溪组黑色页岩特征.成都理工大学学报(自然科学版), 2013, 40(6):621-638. LIU S G, WANG S Y, SUN W, et al. Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(6):621-638.
[6] MILLIKEN K L, RUDNICKI M, AWWILLER D N, et al. Organic matter-hosted pore system, Marcellus Formation(Devonian),Pennsylvania. AAPG Bulletin, 2013, 97(2):177-200.
[7] CURTIS M E, AMBROSE R J, SONDERGELD C H, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin, 2012, 96(4):665-677.
[8] 何建华, 丁文龙, 付景龙, 等.页岩微观孔隙成因类型研究.岩性油气藏, 2014, 26(5):30-35. HE J H, DING W L, FU J L, et al. Study on genetic type of micropore in shale reservoir. Lithologic Reservoirs, 2014, 26(5):30-35.
[9] 魏祥峰, 刘若冰, 张廷山, 等.页岩气储层微观孔隙结构特征及发育控制因素:以川南-黔北XX地区龙马溪组为例.天然气地球科学, 2013, 24(5):1048-1059. WEI X F, LIU R B, ZHANG T S, et al. Micro-pores structure characteristics and development control factors of shale gas reservoir:a case of Longmaxi formation in XX area of southern Sichuan and northern Guizhou. Natural Gas Geoscience, 2013, 24(5):1048-1059.
[10] MATTHIAS T, KATSUMI K, ALEXANDER V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9/10):1051-1069.
[11] 顾忠安, 郑荣才, 王亮, 等.渝东涪陵地区大安寨段页岩储层特征研究.岩性油气藏, 2014, 26(2):67-73. GU Z A, ZHENG R C, WANG L, et al. Characteristics of shale reservoir of Da'anzhai segment in Fuling area eastern Chongqing. Lithologic Reservoirs, 2014, 26(2):67-73.
[12] LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79:848-861.
[13] 孙文峰, 李玮, 董智煜, 等.页岩孔隙结构表征方法新探索.岩性油气藏, 2017, 29(2):125-130. SUN W F, LI W, DONG Z Y, et al. A new approach to the characterization of shale pore structure. Lithologic Reservoirs, 2017, 29(2):125-130.
[14] CLARKSON C R, SOLANO N, BUSTIN R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption,and mercury intrusion. Fuel, 2013, 103, 606-616.
[15] 杨峰, 宁正福, 张世栋, 等.基于氮气吸附实验的页岩孔隙结构表征.天然气工业, 2013, 33(4):135-140. YANG F, NING Z F, ZHANG S D, et al. Characterization of pore structures in shales through nitrogen adsorption experiment. Natural Gas Industry, 2013, 33(4):135-140.
[16] 李贤庆, 王哲, 郭曼, 等.黔北地区下古生界页岩气储层孔隙结构特征.中国矿业大学学报, 2016, 45(6):1172-1183. LI X Q, WANG Z, GUO M, et al. Pore structure characteristics of the Lower Paleozoic formation shale gas reservoir in northern Guizhou. Journal of China University of Mining & Technology, 2016, 45(6):1172-1183.
[17] LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 2012, 96(6):1071-1098.
[18] PAUL C, HACKLEY. Geological and geochemical characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, south Texas:a future shale gas resource. AAPG Bulletin, 2012, 96(8):1449-1482.
[19] 武瑾, 梁峰, 吝文, 等.渝东北地区龙马溪组页岩储层微观孔隙结构特征.成都理工大学学报(自然科学版), 2016, 43(3):308-319. WU J, LIANG F, LIN W, et al. Characteristics of micropore structure of Longmaxi Formation shale gas reservoirs in northeast district of Chongqing, China. Journal of Chengdu University of Technology(Science & Technology Edition), 2016, 43(3):308-319.
[20] 吉利明, 邱军利, 夏燕青, 等.常见黏土矿物电镜扫描微孔特征与甲烷吸附性.石油学报, 2012, 33(2):249-256. JI L M, QIU J L, XIA Y Q, et al. Micro-pore characteristics and methane adsorption properties of common clay minerals by electron microscope scanning. Acta Petrolei Sinica, 2012, 33(2):249-256.
[21] PIETER B, KEVIN S, HELGE S, et al. On the use and abuse of N2 physisorption for the characterization of the pore structure of shales. The Clay Minerals Society Workshop Lectures Series, 2016, 21(12):151-161.
[22] HANSEN J P, SKJELTORP A T. Fractal pore space and rock permeability implications. Physical Review B:Condensed Matter Physics, 1988, 38(4):2635.
[23] YANG F, NING Z F, LIU H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 2014, 115:378-384.
[24] 杨峰, 宁正福, 王庆, 等.页岩纳米孔隙分形特征.天然气地球科学, 2014, 25(4):618-623. YANG F, NING Z F, WANG Q, et al. Fractal characteristics of nanopore in shales. Natural Gas Geoscience, 2014, 25(4):618-623.
[25] 徐勇, 吕成福, 陈俊国, 等.川东南龙马溪组页岩孔隙分形特征.岩性油气藏, 2015, 27(4):32-39. XU Y, LYU C F, CHEN J G, et al. Fractal characteristics of shale pores of Longmaxi Formation in southeast Sichuan Basin. Lithologic Reservoirs, 2015, 27(4):32-39.
[26] ROSS D J K, BUSTIN R M. The importance of shale composition and pore structure upon gas storage of shale gas reservoirs. Marine and Petroleum Geology, 2009, 26(6):916-927.
[27] CHALMERS G R L, BUSTIN R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of northeastern British Columbia. Canada International Journal of Coal Geology, 2007, 70(1):223-239.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 尹路, 李博, 齐雯, 孙东, 乐幸福, 马慧. 天然氢气规模生成的成因类型与成藏特点[J]. 岩性油气藏, 2024, 36(6): 1-11.
[3] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[4] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[5] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[6] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[7] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[8] 王同川, 陈浩如, 温龙彬, 钱玉贵, 李玉琢, 文华国. 川东五百梯地区石炭系岩溶古地貌识别及储集意义[J]. 岩性油气藏, 2024, 36(4): 109-121.
[9] 田亚, 李军辉, 陈方举, 李跃, 刘华晔, 邹越, 张晓扬. 海拉尔盆地中部断陷带下白垩统南屯组致密储层特征及有利区预测[J]. 岩性油气藏, 2024, 36(4): 136-146.
[10] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[11] 夏茂龙, 张本健, 曾乙洋, 贾松, 赵春妮, 冯明友, 李勇, 尚俊鑫. 川中地区蓬莱气田震旦系灯影组二段储层发育主控因素及分布规律[J]. 岩性油气藏, 2024, 36(3): 50-60.
[12] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[13] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[14] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[15] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .