岩性油气藏 ›› 2018, Vol. 30 ›› Issue (3): 43–51.doi: 10.12108/yxyqc.20180306

• 油气地质 • 上一篇    下一篇

可溶有机质对泥页岩储集物性的影响

曹涛涛1, 邓模2, 刘虎3, 宋之光4, 曹清古2, 黄俨然1   

  1. 1. 湖南科技大学 页岩气资源利用与开发湖南省重点实验室, 湖南 湘潭 411201;
    2. 中国石化石油勘探开发研究院 无锡石油地质研究所, 江苏 无锡 214126;
    3. 页岩气评价与开采四川省重点实验室, 成都 600091;
    4. 中国科学院 广州地球化学研究所, 广州 510640
  • 收稿日期:2017-11-25 修回日期:2018-01-04 出版日期:2018-05-21 发布日期:2018-05-21
  • 第一作者:曹涛涛(1987-),男,博士后,讲师,主要从事页岩储集物性及含气性方面的研究工作。地址:(411201)湖南省湘潭市雨湖区桃园路湖南科技大学页岩气资源利用湖南省重点实验室。Email:515165359@163.com。
  • 基金资助:
    国家重大科技专项“彭水地区常压页岩气勘探开发示范工程”(编号:2016ZX05061)和国家自然科学基金项目“页岩解析气碳同位素分馏特征及其指示意义”(编号:41503033)联合资助

Influences of soluble organic matter on reservoir properties of shale

CAO Taotao1, DENG Mo2, LIU Hu3, SONG Zhiguang4, CAO Qinggu2, HUANG Yanran1   

  1. 1. Hunan Provincial Key Laboratory of Shale Gas Resource Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China;
    2. Wuxi Research Institute of Petroleum Geology, Sinopec, Wuxi 214126, Jiangsu, China;
    3. Sichuan Key Laboratory of Shale Gas Evaluation and Exploration, Chengdu 600091, China;
    4. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
  • Received:2017-11-25 Revised:2018-01-04 Online:2018-05-21 Published:2018-05-21

摘要: 可溶有机质是有机质的重要组成部分,为了研究可溶有机质对泥页岩储集物性的影响,对川东北地区龙马溪组和大隆组页岩进行了TOC、岩石热解、扫描电镜、氩离子抛光+扫描电镜等分析,并对页岩进行可溶有机质萃取及开展氮气和甲烷吸附等对比实验。结果表明:①可溶有机质在页岩中,特别是在低成熟页岩中主要赋存于干酪根、黏土矿物和草莓体黄铁矿等颗粒的表面及大中孔中;②萃取可溶有机质后大隆组页岩比表面积和甲烷吸附量均明显增加,而龙马溪组页岩的比表面积和甲烷吸附量没有明显变化,说明低成熟页岩中可溶有机质能阻碍孔隙的连通和降低对气体的吸附能力,但在高—过成熟阶段可溶有机质很少,对比表面积和甲烷吸附量没有影响;③可溶有机质含量与大隆组页岩孔隙分形维数之间具有明显的负相关性,而与龙马溪组页岩孔隙分形维数之间具有正相关性,反映出可溶有机质对低成熟和高成熟页岩孔隙的均匀性方面起相反的作用;④萃取可溶有机质后,大隆组与龙马溪组2套页岩的孔隙分形维数均呈降低的趋势,说明可溶有机质被去除后,页岩的孔隙连通性和均匀性变好。通过本次研究,确定了可溶有机质是影响页岩储集物性的重要因素之一,特别是表征低成熟页岩储层物性时要充分考虑可溶有机质的影响。

Abstract: Soluble organic matter is an important part of organic matter. In order to study the effect of soluble organic matter on shale reservoir properties, the shales of Longmaxi Formation and Dalong Formation in northeastern Sichuan Basin were analyzed in the aspects of TOC content, rock pyrolysis, scanning electronic microscope, scanning electron microscopy combined with argon ion polishing, and the extraction of soluble organic matter and low-pressure N2 and methane adsorption experiments were carried out. The results show that: (1)Soluble organic matters are mainly existing in the surface and meso-macropore of kerogen, clay minerals and framboid pyrites in shales, especially low-maturity shales. (2)The specific surface area and methane adsorption capacity of extracted shale samples increased obviously compared with raw shale samples from Dalong Formation,while there are no obvious changes of specific surface area and methane adsorption capacity between the extracted shale samples and raw shale samples from Longmaxi Formation, indicating that the soluble organic matters in low-maturity shales could hinder the connectivity of pores and decrease methane adsorption capacity,but it has no obvious effect of soluble organic matter on high-maturity shales due to a low content of soluble matter in these shales. (3)Soluble organic matter content has a significant negative correlation with fractal dimension for Dalong shales,but has a positive correction for Longmaxi shales, indicating that soluble organic matter has an opposite effect on the pore heterogeneity for these two sets of shales with different maturities. (4)After extracting the soluble organic matter, fractal dimension values has a decreasing phenomenon for both extracted Dalong and Longmaxi shales, suggesting that the connectivity and uniformity of the pores are improved due to removing the soluble organic matter existing in shale pores. Therefore, through this study, soluble organic matter is deemed to an important factor of reservoir properties of shale,and it should be taken into consideration when characterizing the physical properties of the low-maturity shales.

中图分类号: 

  • TE122.2
[1] MILLKIN K L, RUDNICKI M, AWWILLER D, et al. Organic matter-hosted pore system, Marcellus Formation(Devonian), Pennsylvnia. AAPG Bulletin, 2013, 97(2):177-200.
[2] 李可, 王兴志, 张馨艺, 等.四川盆地东部下志留统龙马溪组页岩储层特征及影响因素.岩性油气藏, 2016, 28(5):52-58. LI K, WANG X Z, ZHANG X Y, et al. Shale reservoir characteristics and influencing factors of the Lower Silurian Longmaxi Formation in the eastern Sichuan Basin. Lithologic Reservoirs, 2016, 28(5):52-58.
[3] 彭波, 刘羽琛, 漆富成, 等.湘西北地区新元古界陡山沱组页岩气成藏条件.岩性油气藏, 2017, 29(4):47-54. PENG B, LIU Y C, QI F C, et al. Shale gas accumulation conditions of Neoproterozoic Doushantuo Formation in NW Hunan province. Lithologic Reservoirs, 2017, 29(4):47-54.
[4] 胡博文, 李斌, 鲁东升, 等.页岩气储层特征及含气性主控因素——以湘西北保靖地区龙马溪组为例.岩性油气藏, 2017, 29(3):83-91. HU B W, LI B, LU D S, et al. Characteristics and main controlling factors of shale gas reservoirs:a case from Longmaxi Formation in Baojing area, NW Hunan province. Lithologic Reservoirs, 2017, 29(3):83-91.
[5] 崔景伟, 朱如凯, 吴松涛, 等.黄铁矿在页岩有机质富集、生排烃与页岩油聚集中的作用.地质论评, 2013, 59(增刊1):783-784. CUI J W, ZHU R K, WU S T, et al. The effect of pyrite on organic matter enrichment, hydrocarbon generation and expulsion and oil accumulation in shale. Geological Review, 2013, 59(Suppl 1):783-784.
[6] LIN W, MASTALERZ M, SCHIMMELMANN A, et al. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales. International Journal of Coal Geology, 2014, 132(12):38-50.
[7] HU H Y, ZHANG T W, WIGGINS-CAMACHO J D, et al. Experimental investigation of changes in methane adsorption of bitumen-free Woodford shale with thermal maturation induced by hydrous pyrolysis. Marine and Petroleum Geology, 2015, 59(1):114-128.
[8] 刘国恒, 黄志龙, 姜振学, 等.湖相页岩液态烃对页岩吸附气实验的影响——以鄂尔多斯盆地延长组页岩为例.石油实验地质, 2015, 37(5):648-654. LIU G H, HUANG Z L, JIANG Z X, et al. effect of liquid hydrocarbons on gas adsorption in a lacustrine shale:a case study of the Yanchang Formation, Ordos Basin. Petroleum Geology and Experiment, 2015, 37(5):648-654.
[9] 李成成, 周世新, 李靖, 等.鄂尔多斯盆地南部延长组泥页岩孔隙特征及其控制因素.沉积学报, 2017, 35(2):315-329. LI C C, ZHOU S X, LI J, et al. Pore characteristics and controlling factors of the Yanchang Formation mudstone and shale in the south of Ordos Basin. Acta Sedimentologica Sinica, 2017, 35(2):315-329.
[10] VALENZA J J, DRENZEK N, MARQUES F, et al. Geochemical controls on shale microstructure. Geology, 2013, 41(5):611-614.
[11] 郭慧娟, 王香增, 张丽霞, 等.抽提前/后成熟页岩对氮气、二氧化碳的吸附特征及其对孔隙研究的意义.地球化学, 2014, 43(4):408-414. GUO H J, WANG X Z, ZHANG L X, et al. Adsorption of N2 and CO2 on mature shales before and after extraction and its implication for investigations of pore structures. Geochimica, 2014, 43(4):408-414.
[12] 潘磊, 肖贤明, 周秦. 可溶有机质对表征页岩储层特性的影响.天然气地球科学, 2015, 26(9):1729-1736. PAN L, XIAO X M, ZHOU Q. Influence of soluble organic matter on characterization of shale reservoir. Natural Gas Geoscience, 2015, 26(9):1729-1736.
[13] 李建忠, 董大忠, 陈更生, 等.中国页岩气资源前景与战略地位.天然气工业, 2009, 29(5):11-16. LI J Z, DONG D Z, CHEN G S, et al. Prospects and strategic position of shale gas resources in China. Natural Gas Industry, 2009, 29(5):11-16.
[14] 梁狄刚, 郭彤楼, 陈建平, 等.中国南方海相生烃成藏研究的若干新进展(一):南方四套区域性海相烃源岩的分布.海相油气地质, 2008, 13(2):1-16. LIANG D G, GUO T L, CHEN J P, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China(Part 1):Distribution of four regional marine source rocks. Marine Origin Petroleum Geology, 2008, 13(2):1-16.
[15] 孙丽娜, 张明峰, 吴陈君, 等.油页岩生排烃模拟实验中不同液态烃产物特征.岩性油气藏, 2017, 29(6):23-31. SUN L N, ZHANG M F, WU C J, et al. Features of liquid hydrocarbon in different states in oil shale during hydrous pyrolysis. Lithologic Reservoirs, 2017, 29(6):23-31.
[16] 罗进雄, 何幼斌.中上扬子地区二叠系烃源岩特征.天然气地球科学, 2014, 25(9):1416-1425. LUO J X, HE Y B. Characteristics of the Permian source rocks in the Middle and Upper Yangtze region. Natural Gas Geoscience, 2014, 25(9):1416-1425.
[17] 雷裕红, 王晖, 罗晓容, 等.鄂尔多斯盆地张家滩页岩液态烃特征及对页岩气量估算的影响.石油学报, 2016, 37(8):952-961. LEI Y H, WANG H, LUO X R, et al. The characteristics of liquid hydrocarbon in Zhangjiatan shale, Ordos Basin and its effects on the estimation of shale gas amount. Acta Petrolei Sinica, 2016, 37(8):952-961.
[18] 崔景伟, 邹才能, 吴松涛, 等.页岩孔隙研究新进展.地球科学进展, 2012, 27(12):1319-1325. CUI J W, ZOU C N, WU S T, et al. New advances in shale porosity research. Advances in Earth Science, 2012, 27(12):1319-1325.
[19] CHALMERS G R L, BUSTIN R M. Lower Cretaceous gas shales in northeastern British Columbia, PartⅠ:Geological controls on methane sorption capacity. Bulletin of Canadian Petroleum Geology, 2008, 56(1):1-22.
[20] 崔景伟, 朱如凯, 崔京钢.页岩孔隙演化及其与残留烃量的关系:来自地质过程约束下模拟实验的证据.地质学报, 2013, 87(5):730-736. CUI J W, ZHU R K, CUI J G. Relationship of porous evolution and residual hydrocarbon:Evidence from modeling experiment with geological constrains. Acta Geologica Sinica, 2013, 87(5):730-736.
[21] MASTALERZ M, SCHMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian New Albany shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bulletin, 2013, 97(10):1621-1643.
[22] GUO H J, JIA W L, PENG P A, et al. Evolution of organic matter and nanometer-scale pores in an artificially matured shale undergoing two distinct types of pyrolysis:a study of the Yanchang Shale with Type Ⅱ kerogen. Organic Geochemistry, 2017, 105(3):56-66.
[23] 李恒超, 刘大永, 彭平安, 等.人工熟化过程中可溶有机质对页岩孔隙特征的影响.地球化学, 2017, 46(5):466-475. LI H C, LIU D Y, PENG P A, et al. Effect of extractable organic matter on pore characteristics of shales treated by artificial heating. Geochimica, 2017, 46(5):466-475.
[24] 梁利喜, 熊健, 刘向君, 等.川南地区龙马溪组页岩孔隙结构的分形特征.成都理工大学学报(自然科学版), 2016, 42(6):700-708. LIANG L X, XIONG J, LIU X J, et al. Fractal characteristics of pore structure of Longmaxi Formation shale in south of Sichuan Basin, China. Journal of Chengdu University of Technology (Science and Technology Edition), 2016, 42(6):700-708.
[25] 王志伟, 卢双舫, 王民, 等.湖相、海相泥页岩孔隙分形特征对比.岩性油气藏, 2016, 28(1):88-93. WANG Z W, LU S F, WANG M, et al. Fractal characteristics of lacustrine shale and marine shale. Lithologic Reservoirs, 2016, 28(1):88-93.
[26] AVNIR D, JARONIEC M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. Langmuir, 1989, 5(6):1431-1433.
[27] WANG M, XUE H T, TIAN S S, et al. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China. Marine and Petroleum Geology, 2015, 67(11):144-153.
[28] 范泓澈, 黄志龙, 袁剑, 等.高温高压条件下甲烷和二氧化碳溶解度试验.中国石油大学学报(自然科学版), 2011, 35(2):6-11. FAN H C, HUANG Z L, YUAN J, et al. Experiment on solubility of CH4 and CO2 at high temperature and high pressure. Journal of China University of Petroleum, 2011, 35(2):6-11.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 尹路, 李博, 齐雯, 孙东, 乐幸福, 马慧. 天然氢气规模生成的成因类型与成藏特点[J]. 岩性油气藏, 2024, 36(6): 1-11.
[3] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[4] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[5] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[6] 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98.
[7] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[8] 王同川, 陈浩如, 温龙彬, 钱玉贵, 李玉琢, 文华国. 川东五百梯地区石炭系岩溶古地貌识别及储集意义[J]. 岩性油气藏, 2024, 36(4): 109-121.
[9] 田亚, 李军辉, 陈方举, 李跃, 刘华晔, 邹越, 张晓扬. 海拉尔盆地中部断陷带下白垩统南屯组致密储层特征及有利区预测[J]. 岩性油气藏, 2024, 36(4): 136-146.
[10] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[11] 夏茂龙, 张本健, 曾乙洋, 贾松, 赵春妮, 冯明友, 李勇, 尚俊鑫. 川中地区蓬莱气田震旦系灯影组二段储层发育主控因素及分布规律[J]. 岩性油气藏, 2024, 36(3): 50-60.
[12] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[13] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[14] 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145.
[15] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .