岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 160–168.doi: 10.12108/yxyqc.20180620

• 石油工程 • 上一篇    

涪陵页岩气田平桥区块深层气井压裂工艺优化与应用

张驰   

  1. 中国石化重庆涪陵页岩气勘探开发有限公司, 重庆 408014
  • 收稿日期:2018-03-22 修回日期:2018-07-28 出版日期:2018-11-16 发布日期:2018-11-16
  • 作者简介:张驰(1989-),男,硕士,主要从事页岩气勘探开发工程工艺方面的研究工作。地址:(408014)重庆市涪陵区焦石镇焦石大道页岩气勘探开发有限公司。Email:532931394@qq.com。
  • 基金资助:
    国家重大科技专项“涪陵页岩气开发示范工程”(编号2016ZX05060)资助

Optimization and application of deep gas well fracturing in Pingqiao block of Fuling shale gas field

ZHANG Chi   

  1. Sinopec Chongqing Fuling Shale Gas Exploration and Development Co., Ltd., Fuling 408014, Chongqing, China
  • Received:2018-03-22 Revised:2018-07-28 Online:2018-11-16 Published:2018-11-16

摘要: 涪陵页岩气田平桥区块深层页岩主力层位垂深约为3 900~4 100 m,地层倾角较大且位于强挤压应力区,地层压裂改造效果受限。采用实验模拟与现场工艺试验相结合的方法对深层压裂工艺优化开展研究。结果表明,工艺优化主要包括:①优化段间距,使之介于45~50 m;②采用定向3簇射孔可在一定程度上避免深层裂缝的顺层延伸问题,同时保证裂缝具有一定的复杂程度;③快速提高前置胶液的施工排量,然后在减阻水携砂阶段,呈阶梯式提高施工排量,有利于初期形成一定宽度的主缝,增加后期裂缝的复杂程度;④单段施工规模应控制在1 900~2 000 m3。研究成果所形成的新工艺与常规工艺相比,缝内净压力增加了12.5%,平均砂液比提高了75.56%,平均单段产气量提高了114.90%,具有广阔的应用前景。

关键词: 压裂改造, 深层页岩, 段间距, 定向射孔, 施工排量, 施工规模

Abstract: The main layer of the shale in Pingqiao block of Fuling shale gas field has a depth of 3 900-4 100 m, which is located in the strong compressive stress area and has large formation dip, so the effect of formation fracturing is limited. The optimization of deep fracturing technology was studied by combining experimental simulation with field test. The results show that optimizing deep fracturing technology mainly includes the following methods: (1)Optimizing the distance of stages between 45 m and 50 m; (2)Using directional three-cluster perfora-tion can avoid the problem of deep fracture extending along the bedding, but also can ensure that the fracture has a certain degree of complexity; (3)Rapidly increasing the construction displacement of pre-glue fluid and increasing the construction displacement step by step in the stage of drag-reducing water and sand-carrying, which is beneficial to increase the complexity of the fractures after forming a certain width of main fracture in the initial stage; (4)The single-stage construction scale should be controlled at 1 900-2 000 m3. Compared with the conventional fracturing process, the net pressure in fracture increased by 12.5%, the average sand-fluid ratio increased by 75.56%, and the average single-stage gas production increased by 114.90%. The optimized process has broad application prospects.

Key words: fracturing, deep shale, distance between stages, directional perforation, construction displacement, construction scale

中图分类号: 

  • TE357.1
[1] 陈作, 曾义金.深层页岩气分段压裂技术现状及发展建议.石油钻探技术, 2016, 44(1):6-11. CHEN Z, ZENG Y J. Present situations and prospects of multistage fracturing technology for deep shale gas development. Petroleum Drilling Techniques, 2016, 44(1):6-11.
[2] 蒋廷学, 卞晓冰, 王海涛, 等.深层页岩气水平井体积压裂技术.天然气工业, 2017, 37(1):90-96. JIANG T X, BIAN X B, WANG H T, et al. Volume fracturing of deep shale horizontal wells. Natural Gas Industry, 2017, 37(1):90-96.
[3] 周祥, 张士诚, 邹雨时, 等.致密油藏水平井体积压裂裂缝扩展及产能模拟.西安石油大学学报(自然科学版), 2015, 30(4):53-58. ZHOU X, ZHANG S C, ZOU Y S, et al. Simulation of fracture propagation and productivity of volume fracturing horizontal well in tight oil reservoirs. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(4):53-58.
[4] 贾长贵, 路保平, 蒋廷学, 等. DY2 HF深层页岩气水平井分段压裂技术.石油钻探技术, 2014, 42(2):85-90. JIA C G, LU B P, JIANG T X, et al. Multi-stage horizontal well fracturing technology in deep shale gas well DY2 HF. Petroleum Drilling Techniques, 2014, 42(2):85-90.
[5] 王成龙, 夏宏泉, 刘国良. SK高陡构造地层地应力的测井解释及应用研究.国外测井技术, 2013(6):35-38. WANG C L, XIA H Q, LIU G L. Logging interpretation of the crustal stress in SK high steep structure formation and its application. World Well Logging Technology, 2013(6):35-38.
[6] 赵军, 蒲万丽, 王贵文, 等.测井信息在前陆挤压区地应力分析中的应用.地质力学学报, 2005, 11(1):53-59. ZHAO J, PU W L, WANG G W, et al. Application of logging information in the analysis of the ground stress in the foreland compressive area. Journal of Geomechanics, 2005, 11(1):53-59.
[7] 蒋廷学, 卞晓冰, 苏瑗, 等.页岩可压性指数评价新方法及应用.石油钻探技术, 2014, 42(5):16-20. JIANG T X, BIAN X B, SU Y, et al. A new method for evaluating shale fracability index and its application. Petroleum Drilling Technique, 2014, 42(5):16-20.
[8] 车世琦.测井资料用于页岩岩相划分及识别——以涪陵气田五峰组-龙马溪组为例. 岩性油气藏, 2018, 30(1):121-132. CHE S Q. Shale lithofacies identification and classification by using logging data-a case of Wufeng-Longmaxi Formation in Fuling Gas Field, Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):121-132.
[9] 赵金洲, 许文俊, 李勇明, 等.页岩气储层可压性评价新方法. 天然气地球科学, 2015, 26(6):1165-1172. ZHAO J Z, XU W J, LI Y M, et al. A new method for fracability evaluation of shale-gas reservoirs. Natural Gas Geoscience, 2015, 26(6):1165-1172.
[10] 袁俊亮, 邓金根, 张定宇, 等.页岩气储层可压裂性评价技术. 石油学报, 2013, 34(3):523-527. YUAN J L, DENG J G, ZHANG D Y, et al. Fracability evaluation of shale-gas reservoirs. Acta Petrolei Sinica, 2013, 34(3):523-527.
[11] 唐瑞江, 王玮, 王勇军, 等.元坝气田HF-1陆相深层页岩气井分段压裂技术及效果.天然气工业, 2014, 34(12):76-80. TANG R J, WANG W, WANG Y J, et al. Staged fracturing technologies for continental ultra-deep shale gas wells and their effects:a case study of well HF-1 in the Yuanba Gas Field, Sichuan Basin. Natural Gas Industry, 2014, 34(12):76-80.
[12] 姜浒, 刘书杰, 何保生, 等.定向射孔对水力压裂多裂缝形态的影响实验.天然气工业, 2014, 34(2):66-70. JIANG H, LIU S J, HE B S, et al. Experiments of the oriented perforating impact on the multi-fracture pattern of hydraulic fracturing treatment. Natural Gas Industry, 2014, 34(2):66-70.
[13] 张广清, 陈勉, 杨艳波.新井定向射孔转向压裂裂缝起裂与延伸机理研究.石油学报, 2008, 29(1):116-119. ZHANG G Q, CHEN M, YANG Y B. Study on initiation and propagation mechanism of fractures in oriented perforation of new wells. Acta Petrolei Sinica, 2008, 29(1):116-119.
[14] 王跃鹏, 刘向君, 梁利喜.页岩力学特性的层理效应及脆性预测.岩性油气藏, 2018, 30(4):149-160. WANG Y P, LIU X J, LIANG L X. Influences of bedding planes on mechanical properties and prediction method of brittleness index in shale. Lithologic Reservoirs, 2018, 30(4):149-160.
[15] 蒋建方, 杨劲舟, 刘光普. 压裂液基液黏度对压开地层的影响.油气井测试, 2013, 22(6):36-38. JIANG J F, YANG J Z, LIU G P. Influence of base fracturing fluid viscosity on breaking layer. Well Testing, 2013, 22(6):36-38.
[16] 范铁刚, 张广清.注液速率及压裂液黏度对煤层水力裂缝形态的影响. 中国石油大学学报(自然科学版), 2014, 38(4):117-123. FAN T G, ZHANG G Q. Influence of injection rate and fracturing fluid viscosity on hydraulic fracture geometry in coal. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(4):117-123.
[17] 王海涛, 蒋廷学, 卞晓冰, 等.深层页岩压裂工艺优化与现场试验.石油钻探技术, 2016, 44(2):76-81. WANG H T, JIANG T X, BIAN X B, et al. Optimization and field application of hydraulic fracturing techniques in deep shale reservoirs. Petroleum Drilling Techniques, 2016, 44(2):76-81.
[18] POPE C, PETERS B, BENTON T, et al. Haynesville shale-one operator's approach to well completions in this evolving play. SPE 125079, 2009.
[19] POPE C, PALISCH T, LOLON E, et al. Improving stimulation effectiveness:Field results in the Haynesville shale. SPE 134165, 2010.
[20] 尚希涛, 何顺利, 刘广峰, 等.水平井分段压裂破裂压力计算. 石油钻采工艺, 2009, 31(2):96-100. SHANG X T, HE S L, LIU G F, et al. Breakdown pressure calculation of staged fracturing for horizontal wells. Oil Drilling & Production Technology, 2009, 31(2):96-100.
[21] 金衍, 陈勉, 张旭东.利用测井资料预测深部地层岩石断裂韧性.岩石力学与工程学报, 2001, 20(4):454-456. JIN Y, CHEN M, ZHANG X D. Determination of fracture toughness for deep well rock with geophysical logging data. Chinese Journal of Rock Mechanic Sand Engineering, 2001, 20(4):454-456.
[22] 张健, 敬季昀, 王杏尊.利用小型压裂短时间压降数据快速获取储层参数的新方法. 岩性油气藏, 2018, 30(4):133-139. ZHANG J, JING J Y, WANG X Z. New method for obtaining reservoir parameters with a short time of pressure drop after mini-fracturing. Lithologic Reservoirs, 2018, 30(4):133-139.
[23] 侯冰, 陈勉, 程万, 等.页岩气储层变排量压裂的造缝机制. 岩土工程学报, 2014, 36(11):2149-2152. HOU B, CHEN M, CHENG W, et al. Fracture mechanism on shale gas reservoir fracturing with variable pump rate. Chinese Journal of Geotechnical Engineering, 2014, 36(11):2149-2152.
[24] 刘建坤, 蒋廷学, 万有余, 等.致密砂岩薄层压裂工艺技术研究及应用. 岩性油气藏, 2018, 30(1):165-172. LIU J K, JIANG T X, WAN Y Y, et al. Fracturing technology for thin layer in tight sandstone reservoir and its application. Lithologic Reservoirs, 2018, 30(1):165-172.
[25] 樊凤玲, 李宪文, 曹宗熊, 等.致密油层体积压裂排量优化方法.西安石油大学学报(自然科学版), 2014, 29(3):79-82. FAN F L, LI X W, CAO Z X, et al. Optimization of pumping rate for volume fracturing of tight reservoir. Journal of Xi'an Shiyou University(Natural Science Edition), 2014, 29(3):79-82.
[26] 魏斌, 陈平, 张冕, 等.变排量压裂技术及其现场应用.石油钻采工艺, 2000, 22(6):70-71. WEI B, CHEN P, ZHANG M, et al. Fracturing technology with alteration discharge capacity and it's field application. Oil Drilling & Production Technology, 2000, 22(6):70-71.
[27] 韩婧婧, 刘建, 武龙.鄂尔多斯盆地长6致密砂岩油藏压裂技术研究.岩性油气藏, 2017, 29(1):130-134. HAN J J, LIU J, WU L. Fracturing technology of Chang 6 tight sandstone reservoir in Ordos Basin. Lithologic Reservoirs, 2017, 29(1):130-134.
[1] 卞晓冰, 侯磊, 蒋廷学, 高东伟, 张驰. 深层页岩裂缝形态影响因素[J]. 岩性油气藏, 2019, 31(6): 161-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨秋莲, 李爱琴, 孙燕妮, 崔攀峰. 超低渗储层分类方法探讨[J]. 岩性油气藏, 2007, 19(4): 51 -56 .
[2] 张杰, 赵玉华. 鄂尔多斯盆地三叠系延长组地震层序地层研究[J]. 岩性油气藏, 2007, 19(4): 71 -74 .
[3] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[4] 朱小燕, 李爱琴, 段晓晨, 田随良, 刘美荣. 镇北油田延长组长3 油层组精细地层划分与对比[J]. 岩性油气藏, 2007, 19(4): 82 -86 .
[5] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[6] 韩春元,赵贤正,金凤鸣,王权,李先平,王素卿. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践(IV)——勘探实践[J]. 岩性油气藏, 2008, 20(1): 15 -20 .
[7] 戴朝成,郑荣才,文华国,张小兵. 辽东湾盆地旅大地区古近系层序—岩相古地理编图[J]. 岩性油气藏, 2008, 20(1): 39 -46 .
[8] 尹艳树,张尚峰,尹太举. 钟市油田潜江组含盐层系高分辨率层序地层格架及砂体分布规律[J]. 岩性油气藏, 2008, 20(1): 53 -58 .
[9] 石雪峰,杜海峰. 姬塬地区长3—长4+5油层组沉积相研究[J]. 岩性油气藏, 2008, 20(1): 59 -63 .
[10] 严世邦,胡望水,李瑞升,关键,李涛,聂晓红. 准噶尔盆地红车断裂带同生逆冲断裂特征[J]. 岩性油气藏, 2008, 20(1): 64 -68 .