岩性油气藏 ›› 2019, Vol. 31 ›› Issue (2): 1–7.doi: 10.12108/yxyqc.20190201

• 论坛与综述 •    下一篇

非常规油气CO2压裂技术进展及应用实践

王香增1, 孙晓2, 罗攀2, 穆景福2   

  1. 1. 陕西延长石油(集团)有限责任公司, 西安 710075;
    2. 陕西延长石油(集团)有限责任公司研究院, 西安 710075
  • 收稿日期:2018-10-25 修回日期:2019-01-18 出版日期:2019-03-21 发布日期:2019-03-21
  • 作者简介:王香增(1968-),男,博士,教授级高级工程师,主要从事低渗油气田勘探开发方面的研究工作。地址:(710075)陕西省西安市高新区科技二路75号。Email:sxycpcwxz@163.com。
  • 基金资助:
    陕西省青年科技新星项目“CO2压裂井筒温压及地层波及规律研究”(编号:S2019-ZC-XXXM-0068)资助

Progress and application of CO2 fracturing technology for unconventional oil and gas

WANG Xiangzeng1, SUN Xiao2, LUO Pan2, MU Jingfu2   

  1. 1. Shaanxi Yanchang Petroleum(Group) CO., LTD., Xi'an 710075, China;
    2. Research Institute of Shannxi Yanchang Petroleum(Group) CO., LTD., Xi'an 710075, China
  • Received:2018-10-25 Revised:2019-01-18 Online:2019-03-21 Published:2019-03-21

摘要: 非常规油气是我国重要的接替资源,由于油气储层物性普遍较差,大规模水力压裂是目前比较有效的储层改造技术,但存在耗水量大、储层伤害大、环境污染等问题。CO2压裂技术充分利用CO2自身扩散能力强、储层配伍性好、可增加地层能量等特点,具有节水、保护环境、埋存CO2以及增产等优势。室内实验及现场实践证明,CO2压裂技术可有效降低储层伤害、改善储层物性,降低岩石起裂压力,促进形成复杂缝网,同时可以高效置换吸附气、降低原油黏度,提高单井产量,CO2压裂技术相对于水力压裂,压后返排率可提高25%以上,平均单井产量可提高1.9倍以上。通过进一步优化工艺技术,研发配套设备及制定相关标准,探索区块整体开发模式,CO2压裂技术必将极大地促进我国非常规油气绿色和高效开发。

关键词: 非常规油气, CO2压裂, 增产机理, 技术进展

Abstract: Unconventional oil and gas are very important superseding resources in China,for poor porosity and permeability,reservoir simulation technology is necessary and large-scale hydraulic fracturing is very effective, but some consequent problems such as high water consumption,high reservoir damage and environmental pollution are inevasible. CO2 fracturing technology,which fully used the CO2 characteristics of easy to diffusion, good formation compatibility and increasing the formation energy, has advantages of saving water,protecting environment,burying CO2 and increasing oil and gas production. Laboratory experiment and field practice indicate that CO2 fracturing technology can effectively reduce reservoir damage, improve reservoir properties,reduce rock initiation pressure,form complex fracture network,replace CH4 and reduce crude oil viscosity. Compared with hydraulic fracturing technology,it can improve backflow rate above 25%,and improve the average single well production above 1.9 times. By further optimizing of technology,developing matching equipment and relevant standards,exploring the overall development of blocks,CO2 fracturing technology will greatly promote the green and efficient development of unconventional oil and gas in China.

Key words: unconventional oil and gas, CO2 fracturing, stimulation mechanism, technical progress

中图分类号: 

  • TE122.2
[1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景.石油勘探与开发, 2012, 39(2):129-136. JIA C Z, ZHENG M, ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development, 2012, 39(2):129-136.
[2] HOLDITCH S A. Tight gas sands. Journal of Petroleum Technology, 2006, 58(6):86-93.
[3] 中华人民共和国国家技术监督局.GB/T 31483-2015页岩气地质评价方法.北京:中国标准出版社, 2015. State Bureau of Technical Supervision of the People's Republic of China. GB/T 31483-2015 Geological evaluation method of shale gas. Beijing:China Standard Press, 2015.
[4] 吴安林, 李嘉, 张晓虎. 长宁区块页岩气压裂液体系应用分析.天然气技术与经济, 2018, 12(3):23-25. WU A L, LI J, ZHANG X H. Application fracturing-fluid system to shale gas well,Changning block. Natural Gas Technology and Economy, 2018, 12(3):23-25.
[5] 杨长军, 田庆华, 陈亚平, 等.浅谈页岩气开发对川南地区水资源的影响.环境工程, 2018, 36(增刊1):117-121. YANG C J, TIAN Q H, CHEN Y P, et al. Impacts of the process of shale gas development on water resource in southern Sichuan area. Environmental Engineering, 2018, 36(suppl 1):117-121.
[6] 王满学, 何娜.液态CO2干法加砂压裂增稠剂技术现状及展望.石油与天然气化工, 2017, 46(3):57-62. WANG M X, HE N. Research progress and prospective in liquid CO 2 dry fracturing thickeners technology. Chemical Engineering of Oil & Gas, 2017, 46(3):57-62.
[7] TOUZEL P. Managing environmental and social risks in China. SPE 156503, 2012.
[8] SLUTZ J A, ANDERSON J A, BRODERICK R, et al. Key shale gas water management strategies:an economic assessment. International Conference on Health,Safety and Environment in Oil and Gas Exploration and Production. SPE 157532, 2012.
[9] GUPTA D V, BOBIER D M. The history and success of liquid CO 2 and CO2/N2 fracturing system. SPE 40016, 1998.
[10] 杨雪, 张凡, 杨欢.二氧化碳干法压裂增产技术及展望.当代化工研究, 2016, 11(1):77-79. YANG X, ZHANG F, YANG H. Production increase technology and outlook of CO 2 dry fracturing. Chemical Intermediate, 2016, 11(1):77-79.
[11] 段百奇, 王树众, 沈林华, 等.干法压裂技术在实施中的经济分析.天然气工业, 2006, 26(8):104-106. DUAN B Q, WANG S Z, SHEN L H, et al. Economic analysis of CO 2/sand fracturing technology for water sensitivity and lowpermeability gas reservoirs. Nature Gas Industry, 2006, 26(8):104-106.
[12] LIU Q Y, LEI T, ZHU H Y, et al. Macroscale mechanical and microscale structural changes in Chinese Wufeng shale with supercritical carbon dioxide fracturing. SPE Journal, 2017.
[13] 孙可明, 吴迪, 粟爱国, 等.超临界CO2 作用下媒体渗透性与孔隙压力-有效体积应力-温度耦合规律试验研究.岩石力学与工程学报, 2013, 32(2):3760-3767. SUN K M, WU D, SU A G, et al. Coupling experimental study of coal permeability with pore pressure-effective volume stresstemperature under supercritical carbon dioxide action. Journal of Rock Mechanics and Engineering, 2013, 32(2):3760-3767.
[14] TUDOR R, VOZNIAK C, PETERS W, et al. Technical advances in liquid CO2 fracturing. PETSOC, 1994.
[15] 岳立新, 孙可明.超临界CO2增透煤微观图像重构及三维数值模拟.中国安全生产科学技术, 2017, 13(1):58-64. YUE L X, SUN K M. Microscopic image reconstruction and three-dimensional numerical simulation of supercritical CO2 antireflection coal. Journal of Safety Science and Technology, 2017, 13(1):58-64.
[16] 王海柱, 沈忠厚, 李根生.超临界CO2开发页岩气技术.石油钻井技术, 2011, 39(3):30-35. WANG H Z, SHEN Z H, LI G S. Feasibility analysis on shale gas exploration with supercritical CO2. Petroleum Drilling Tecniques, 2011, 39(3):30-35.
[17] ZHANG X W, LU Y Y, TANG J R, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel, 2016, 190:370-378.
[18] KOLLE J J. Coiled-tubing drilling with supercritical carbon dioxide. SPE 65534, 2000.
[19] GUPTA S V S, BOBIER D M. The history and success of liquid CO 2 and CO2/N2 fracturing system. SPE 40016, 1998.
[20] 丁勇, 马新星, 叶亮, 等.CO2破岩机理及压裂工艺技术研究. 岩性油气藏, 2018, 30(6):151-159. DING Y, MA X X, YE L, et al. Rock breaking mechanism of CO 2 and fracturing technology. Lithologic Reservoirs, 2018, 30(6):151-159.
[21] 卢义玉, 廖引, 汤积仁, 等.页岩超临界CO2压裂起裂压力与裂缝形态试验研究. 煤炭学报, 2018, 43(1):175-180. LU Y Y, LIAO Y, TANG J R, et al. Experimental study on fracture initiation pressure and morphology in shale using supercritical CO 2 fracturing. Journal of China Coal Society, 2018, 43(1):175-180.
[22] KIZAKI A, TANAKA H, OHASHI K, et al. Hydraulic fracturing in Inada granite and Ogino tuff with super critical carbon dioxide. ISRM-ARMS 7-2012-109, 2012.
[23] DUAN S, GU M, DU X D, et al. Adsorption equilibrium of CO 2 and CH4 and their mixture on Sichuan Basin shale. Energy Fuels, 2016, 30:2248-2256.
[24] 夏惠芬, 徐勇.低渗透油藏CO2驱油机理及应用现状研究.当代化工, 2017, 46(3):471-474. XIA H F,XU Y. Study in the mechanism and application of CO2 flooding in low permeability reservoirs. Contemporary Chemical Industry, 2017, 46(3):471-474.
[25] 孙鑫, 杜明勇, 韩彬彬, 等. 二氧化碳压裂技术研究综述.当代化工, 2017, 34(2):374-380. SUN X, DU M Y, HAN B B, et al. Review on carbon dioxide fracturing technology. Oilfield Chemistry, 2017, 34(2):374-380.
[26] HOSSEINI H, TSAU J, PELTIER E, et al. Lowering fresh water usage in hydraulic fracturing by stabilizing scCO2 foam with polyelectrolyte complex nanoparticles prepared in high salinity produced water. SPE International Conference & Exhibition on Formation Damage Control, 2018.
[27] 陈挺, 周勋, 刘智恪, 等.低残渣CO2 泡沫压裂液在苏里格低压低渗气藏的应用.钻采工艺, 2018, 41(5):92-94. CHEN T, ZHOU X, LIU Z G, et al. Application of low residue CO 2 foam fracturing fluid in low pressure low permeability gas reservoirs in Sulige. Drilling & Production Technology, 2018, 41(5):92-94.
[28] 高志亮, 段玉秀, 吴金桥, 等.酸性交联CO2泡沫压裂液起泡剂的研制及其性能研究.钻井液与完井液, 2013, 30(5):79-81. GAO Z L, DUAN Y X, WU J Q, et al. Selection and performance study of foaming agent of CO2 acidic crosslinking foam fracturing liquid. Drilling Fluid and Completion Fluid, 2013, 30(5):79-81.
[29] SUN X, LIANG X B, WANG S Z, et al. Experimental study on the rheology of CO2 viscoelastic surfactant foam fracturing fluid. Journal of Petroleum Science and Engineering, 2014, 119:104-111.
[30] 王香增.延长石油集团非常规天然气勘探开发进展.石油学报, 2016, 37(1):137-143. WANG X Z. Advances in unconventional gas exploration and development of Yanchang Petroleum Group. Acta Petrolei Sinica, 2016, 37(1):137-143.
[31] 贾光亮. 东胜气田超临界CO2 复合干法压裂技术试验. 重庆科技学院学报(自然科学版), 2018, 20(2):24-27. JIA G L. Compound dry fracturing technology with supercritical carbon dioxide in Dongsheng gas field. Journal of Chongqing University of Science and Technology(Natural Science Edition), 2018, 20(2):24-27.
[32] MIDDLETON R S, CAREY J W, CURRIER R P, et al. Shale gas and non-aqueous fracturing fluids:Opportunities and challenges for supercritical CO2. Applied Energy, 2015, 147(3):500-509.
[33] 李珊, 郑维师. 国外新型CO2密闭混砂装置及液态CO2压裂案例分析.钻采工艺, 2017, 40(5):36-38. LI S, ZHENG W S. A new airtight CO2/proppant blender and a case study of water-free CO2 fracturing abroad. Drilling & Production Technology, 2017, 40(5):36-38.
[34] 刘合, 王峰, 张劲, 等. 二氧化碳干法压裂技术:应用现状与发展趋势. 石油勘探与开发, 2014, 41(4):466-472. LIU H, WANG F, ZHANG J, et al. Fracturing with carbon dioxide:Application and development trend. Petroleum Exploration and Development, 2014, 41(4):466-472.
[35] 韩烈祥.CO2干法加砂压裂技术试验成功.钻采工艺, 2013, 36(5):99. HAN L X. The success of experiment on sand fracturing with liquid carbon dioxide. Drilling and Production Technology, 2013, 36(5):99.
[36] 田磊, 何建军, 杨振周, 等.二氧化碳蓄能压裂技术在吉林油田的应用.钻井液与完井液, 2015, 32(6):78-80. TIAN L, HE J J, YANG Z Z, et al. Application of CO2 energized fracturing fluid technology in Jilin Oilfield. Drilling Fluid and Completion Fluid, 2015, 32(6):78-80.
[37] 王香增, 吴金桥, 张军涛.陆相页岩气层的CO2压裂技术应用探讨.天然气工业, 2014, 34(1):64-67. WANG X Z, WU J Q, ZHANG J T. Application of CO2 fracturing technology for terrestrial shale gas reservoirs. Nature Gas Industry, 2014, 34(1):64-67.
[1] 罗群, 王井伶, 罗家国, 吴安彬. “非常规油气缝-孔耦合富烃假说”概述[J]. 岩性油气藏, 2019, 31(4): 1-12.
[2] 丁勇, 马新星, 叶亮, 肖元相, 张燕明, 古永红, 马超星. CO2破岩机理及压裂工艺技术研究[J]. 岩性油气藏, 2018, 30(6): 151-159.
[3] 王正和, 余谦. 准南上二叠统芦草沟组非常规油气储层特征[J]. 岩性油气藏, 2017, 29(5): 28-35.
[4] 郭秋麟,周长迁,陈宁生,胡俊文,谢红兵. 非常规油气资源评价方法研究[J]. 岩性油气藏, 2011, 23(4): 12-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 冯心远,王宇超,胡自多,李 斐,邵喜春. 基于叠后地震记录求取整形算子的叠前资料拼接技术[J]. 岩性油气藏, 2007, 19(3): 93 -96 .
[4] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[5] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[6] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[7] 潘建国,卫平生,张虎权,谭开俊. 地震储层学与相关学科的比较[J]. 岩性油气藏, 2010, 22(3): 1 -4 .
[8] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[9] 邢二涛,张云锋. 水平井开发技术在贝中区N1 段应用研究[J]. 岩性油气藏, 2010, 22(Z1): 93 -95 .
[10] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .