岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 151–159.doi: 10.12108/yxyqc.20180619

• 石油工程 • 上一篇    下一篇

CO2破岩机理及压裂工艺技术研究

丁勇1,2, 马新星1, 叶亮1, 肖元相1, 张燕明1, 古永红1, 马超星3   

  1. 1. 中国石油长庆油田分公司 油气工艺研究院, 西安 710018;
    2. 低渗透油气田勘探开发国家工程实验室, 西安 710018;
    3. 中国石油长庆油田分公司 第十一采油厂, 甘肃 西峰 745000
  • 收稿日期:2018-02-02 修回日期:2018-09-04 出版日期:2018-11-16 发布日期:2018-11-16
  • 作者简介:丁勇(1986-),男,硕士,工程师,主要从事油田压裂酸化方面的研究工作。地址:(710018)陕西省西安市未央区明光路中国石油长庆油田分公司油气工艺研究院。Email:dyong1_cq@petrochina.com.cn。
  • 基金资助:
    大型油气田及煤层气开发国家重大科技专项“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”(编号:2016ZX05050)资助

Rock breaking mechanism of CO2 and fracturing technology

DING Yong1,2, MA Xinxing1, YE Liang1, XIAO Yuanxiang1, ZHANG Yanming1, GU Yonghong1, MA Chaoxing3   

  1. 1. Research Institute of Oil & Gas Technology, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi'an 710018, China;
    3. No.11 Oil Production Plant, PetroChina Changqing Oilfield Company, Xifeng 745000, Gansu, China
  • Received:2018-02-02 Revised:2018-09-04 Online:2018-11-16 Published:2018-11-16

摘要: 为了明确不同介质注入过程中有效应力的变化规律,揭示超临界CO2压裂的起裂压力低、穿透距离远、裂缝密度广的力学机理,基于线弹性多孔介质模型,线性分解井筒平面各向应力,引入井筒增压速率,对孔隙压力与附加周向应力进行修正。结合长庆气田致密气特征,集CO2破岩增压与滑溜水体积压裂双重优势,改进气藏地质储量容积差值法,优化CO2注入量,根据井下压力计监测数据分析动态滤失平衡点,优化CO2施工排量,研发防冻隔离液,开发单机组作业流程,攻关形成前置CO2蓄能压裂技术。计算结果表明:液态CO2压裂的起裂压力降低了69.2%,超临界CO2压裂的起裂压力降低了75.5%。在鄂尔多斯盆地东部开展先导性试验6口井,一次喷通率100%,平均试气产量7.59万m3/d,为长庆气田探索出了新的技术增产途径。

关键词: 致密气, CO2压裂, 破岩准则, 增产机理

Abstract: In order to make clear the change rule of effective stress during the injection processes with different media and reveal the mechanical mechanism of low break down pressure, long penetrate distance and high fracture distribution density during super-critical CO2 fracturing, based on linear elastic porous medium model and linear decomposition of anisotropic stress on wellbore plane, pressurization rate was introduced to carry out correction of pore pressure and additional circumferential stress. In view of the characteristics of tight gas reservoir in Changqing gas field, with the dual advantages of CO2 rock breaking, pressurizing and slick water volume fracturing, geological reserve volume difference method of gas reservoir was improved to optimizing the CO2 injection quantity. According to the monitoring data of down hole pressure gauge, the dynamic filtration loss equilibrium point was analyzed, and the CO2 construction displacement was obtained. Thanks to anti-freeze isolating liquid, a single fracturing unit operation process was formed. Finally, CO2 volume fracturing technology was formed. The result shows that fracture initiation pressure dropped by 69.2% in the case of liquid CO2 and 75.5% in the case of super-critical CO2. Pilot tests were carried out on six wells in eastern Ordos Basin, 100% cleanup with no nitrogen lift, and the average single layer initial gas rate of subject wells is 75 900 m3/d, which indicates that CO2 fracturing techniques is expected to be a new stimulation method for Changqing gas field.

Key words: tight gas, CO2 fracturing, rock breaking criterion, mechanism of increasing production

中图分类号: 

  • TE357.3
[1] 胡俊坤, 龚伟, 任科.中国致密气开发关键因素分析与对策思考. 天然气技术与经济, 2015, 9(6):24-29. HU J K, GONG W, REN K. Key factors affecting China tightgas development and some countermeasures. Natural Gas Technology and Economy, 2015, 9(6):24-29.
[2] 位云生, 贾爱林, 何东博, 等.中国页岩气与致密气开发特征与开发技术异同. 天然气工业, 2017, 37(11):43-52. WEI Y S, JIA A L, HE D B, et al. Comparative analysis of development characteristics and technologies between shale gas and tight gas in China. Natural Gas Industry, 2017, 37(11):43-52.
[3] 贾爱林. 中国天然气开发技术进展及展望. 天然气工业, 2018, 38(4):77-85. JIA A L. Progress and prospects of natural gas development technologies in China. Natural Gas Industry, 2018, 38(4):77-85.
[4] 王朋岩, 邴振阳. 全球致密砂岩气资源分布特征与规律. 中国锰业, 2017, 35(6):23-29. WANG P Y, BING Z Y. Distribution characteristics and regularities of tight sandstone gas resources in the world. China's Manganese Industry, 2017, 35(6):23-29.
[5] 杨华, 付金华, 刘新社, 等.鄂尔多斯盆地上古生界致密气成藏条件与勘探开发.石油勘探与开发, 2012, 39(3):295-303. YANG H, FU J H, LIU X S, et al. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin. Petroleum Exploration and Development, 2012, 39(3):295-303.
[6] 覃小丽, 李荣西, 席胜利, 等.鄂尔多斯盆地东部地区太原组储层黏土矿物特征及成因.岩性油气藏, 2016, 28(1):50-55. QIN X L, LI R X, XI S L, et al. Characteristics and origin of clay minerals of Taiyuan Formation in eastern Ordos Basin. Lithologic Reservoirs, 2016, 28(1):50-55.
[7] 马力, 欧阳传湘, 谭钲扬, 等.低渗透油藏CO2驱中后期提效方法研究. 岩性油气藏, 2018, 30(2):141-144. MA L, OUYANG C X, TAN Z Y, et al. Efficiency improvement of CO2 flooding in middle and later stage for low permeability reservoirs. Lithologic Reservoirs, 2018, 30(2):141-144.
[8] 吴金桥, 高志亮, 孙晓, 等. 液态CO2压裂技术研究现状与展望.长江大学学报(自科版), 2014, 11(10):104-107. WU J Q, GAO Z L, SUN X, et al. Research and prospect of CO2 fracturing technology. Journal of Yangtze University(Natural Science Edition), 2014, 11(10):104-107.
[9] 杨发, 汪小宇, 李勇. 二氧化碳压裂液研究及应用现状.石油化工应用, 2014, 33(12):9-12. YANG F, WANG X Y, LI Y. Research and application status of carbon dioxide fracturing fluid. Petrochemical Industry Application, 2014, 33(12):9-12.
[10] KING S R. Liquid CO2 for the stimulation of low-permeability reservoirs. SPE 11616, 1983.
[11] YOST Ⅱ A B, GEHR J B. CO2/sand fracturing in Devonian shales. SPE 26925, 1993.
[12] GUPTA D V S, BOBIER D M. The history and success of liquid CO2 and CO2/N2 fracturing system. SPE 40016, 1998.
[13] 谢平, 侯光东, 韩静静.CO2压裂技术在苏里格气田的应用. 断块油气田, 2009, 16(5):104-106. XIE P, HOU G D, HAN J J. Application of CO2 fracturing technology in Sulige Gas Field. Fault-Block Oil & Gas Field, 2009, 16(5):104-106.
[14] 卢义玉, 廖引, 汤积仁, 等.页岩超临界CO2压裂起裂压力与裂缝形态试验研究. 煤炭学报, 2018, 43(1):176-180. LU Y Y, LIAO Y, TANG J R, et al. Experimental study on fracture initiation pressure and morphology in shale using supercritical CO2 fracturing. Journal of China Coal Society, 2018, 43(1):176-180.
[15] 宋振云, 苏伟东, 杨延增, 等. CO2干法加砂压裂技术研究与实践. 天然气工业, 2014, 34(6):55-59. SONG Z Y, SU W D, YANG Y Z, et al. Experimental studies of CO2/sand dry-frac process. Natural Gas Industry, 2014, 34(6):55-59.
[16] 王香增, 吴金桥, 张军涛.陆相页岩气层的CO2压裂技术应用探讨. 天然气工业, 2014, 34(1):64-67. WANG X Z, WU J Q, ZHANG J T. Application of CO2 fracturing technology for terrestrial shale gas reservoirs. Natural Gas Industry, 2014, 34(1):64-67.
[17] 陈立强, 田守嶒, 李根生, 等.超临界CO2压裂起裂压力模型与参数敏感性研究. 岩土力学, 2015, 36(2):125-130. CHEN L Q, TIAN S Z, LI G S, et al. Initiation pressure models for supercritical CO2 fracturing and sensitivity analysis. Rock and Soil Mechanics, 2015, 36(2):125-130.
[18] 孙可明, 吴迪, 粟爱国, 等.超临界CO2作用下煤体渗透性与孔隙压力-有效体积应力-温度耦合规律试验研究. 岩石力学与工程学报, 2013, 32(2):3760-3767. SUN K M, WU D, SU A G, et al. Coupling experimental study of coal permeability with pore pressure-effective volume stresstemperature under supercritical carbon dioxide action. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2):3760-3767.
[19] 陆友莲, 王树众, 沈林华, 等. 纯液态CO2压裂非稳态过程数值模拟. 天然气工业, 2008, 28(11):93-95. LU Y L, WANG S Z, SHEN L H, et al. Numerical simulation on the initial unstable stages of liquid CO2 fracturing. Natural Gas Industry, 2008, 28(11):93-95.
[20] 赵志恒, 李晓, 张搏, 等.超临界二氧化碳无水压裂新技术实验研究展望. 天然气勘探与开发, 2016, 39(2):58-63. ZHAO Z H, LI X, ZHANG B, et al. Experimental study on supercritical CO2 fracturing. Natural Gas Exploration & Development, 2016, 39(2):58-63.
[21] 陈丽华.强水敏储层矿物高温变化对储层物性的影响——以金家油田沙一段为例. 岩性油气藏, 2016, 28(4):121-126. CHEN L H. Influence of thermal alteration of minerals in strong water sensitive reservoir on physical properties:a case study from the first member of Shahejie Formation in Jinjia Oilfield. Lithologic Reservoirs, 2016, 28(4):121-126.
[22] 孙小辉, 孙宝江, 王志远.超临界CO2压裂裂缝温度场模型. 石油学报, 2015, 36(12):1587-1592. SUN X H, SUN B J, WANG Z Y. Fissure temperature field model of supercritical CO2 fracturing. Lithologic Reservoirs, 2015, 36(12):1587-1592.
[23] 刘合, 王峰, 张劲, 等. 二氧化碳干法压裂技术——应用现状与发展趋势. 石油勘探与开发, 2014, 41(4):466-472. LIU H, WANG F, ZHANG J, et al. Fracturing with carbon dioxide:Application status and development trend. Petroleum Exploration and Development, 2014, 41(4):466-472.
[24] 张健, 敬季昀, 王杏尊.利用小型压裂短时间压降数据快速获取储层参数的新方法. 岩性油气藏, 2018, 30(4):133-139. ZHANG J, JIN J Y, WANG X Z. New method for obtaining reservoir parameters with a short time of pressure drop after mini-fracturing. Lithologic Reservoirs, 2018, 30(4):133-139.
[1] 张满郎, 孔凡志, 谷江锐, 郭振华, 付晶, 郑国强, 钱品淑. 九龙山气田珍珠冲组砂砾岩储层评价及有利区优选[J]. 岩性油气藏, 2020, 32(3): 1-13.
[2] 王香增, 孙晓, 罗攀, 穆景福. 非常规油气CO2压裂技术进展及应用实践[J]. 岩性油气藏, 2019, 31(2): 1-7.
[3] 何吉祥, 姜瑞忠, 毛瑜, 袁淋. 致密气藏气水两相压裂水平井产能计算方法[J]. 岩性油气藏, 2017, 29(4): 154-161.
[4] 张杰, 张超谟, 张占松, 张冲, 聂昕. 基于应力-应变曲线形态的致密气储层脆性研究[J]. 岩性油气藏, 2017, 29(3): 126-131.
[5] 郭 平,许清华,孙 振,杜建芬,汪周华. 天然气藏 CO2驱及地质埋存技术研究进展[J]. 岩性油气藏, 2016, 28(3): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .