岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 160168.doi: 10.12108/yxyqc.20180620
• 石油工程 • 上一篇
张驰
ZHANG Chi
摘要: 涪陵页岩气田平桥区块深层页岩主力层位垂深约为3 900~4 100 m,地层倾角较大且位于强挤压应力区,地层压裂改造效果受限。采用实验模拟与现场工艺试验相结合的方法对深层压裂工艺优化开展研究。结果表明,工艺优化主要包括:①优化段间距,使之介于45~50 m;②采用定向3簇射孔可在一定程度上避免深层裂缝的顺层延伸问题,同时保证裂缝具有一定的复杂程度;③快速提高前置胶液的施工排量,然后在减阻水携砂阶段,呈阶梯式提高施工排量,有利于初期形成一定宽度的主缝,增加后期裂缝的复杂程度;④单段施工规模应控制在1 900~2 000 m3。研究成果所形成的新工艺与常规工艺相比,缝内净压力增加了12.5%,平均砂液比提高了75.56%,平均单段产气量提高了114.90%,具有广阔的应用前景。
中图分类号:
[1] 陈作, 曾义金.深层页岩气分段压裂技术现状及发展建议.石油钻探技术, 2016, 44(1):6-11. CHEN Z, ZENG Y J. Present situations and prospects of multistage fracturing technology for deep shale gas development. Petroleum Drilling Techniques, 2016, 44(1):6-11. [2] 蒋廷学, 卞晓冰, 王海涛, 等.深层页岩气水平井体积压裂技术.天然气工业, 2017, 37(1):90-96. JIANG T X, BIAN X B, WANG H T, et al. Volume fracturing of deep shale horizontal wells. Natural Gas Industry, 2017, 37(1):90-96. [3] 周祥, 张士诚, 邹雨时, 等.致密油藏水平井体积压裂裂缝扩展及产能模拟.西安石油大学学报(自然科学版), 2015, 30(4):53-58. ZHOU X, ZHANG S C, ZOU Y S, et al. Simulation of fracture propagation and productivity of volume fracturing horizontal well in tight oil reservoirs. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(4):53-58. [4] 贾长贵, 路保平, 蒋廷学, 等. DY2 HF深层页岩气水平井分段压裂技术.石油钻探技术, 2014, 42(2):85-90. JIA C G, LU B P, JIANG T X, et al. Multi-stage horizontal well fracturing technology in deep shale gas well DY2 HF. Petroleum Drilling Techniques, 2014, 42(2):85-90. [5] 王成龙, 夏宏泉, 刘国良. SK高陡构造地层地应力的测井解释及应用研究.国外测井技术, 2013(6):35-38. WANG C L, XIA H Q, LIU G L. Logging interpretation of the crustal stress in SK high steep structure formation and its application. World Well Logging Technology, 2013(6):35-38. [6] 赵军, 蒲万丽, 王贵文, 等.测井信息在前陆挤压区地应力分析中的应用.地质力学学报, 2005, 11(1):53-59. ZHAO J, PU W L, WANG G W, et al. Application of logging information in the analysis of the ground stress in the foreland compressive area. Journal of Geomechanics, 2005, 11(1):53-59. [7] 蒋廷学, 卞晓冰, 苏瑗, 等.页岩可压性指数评价新方法及应用.石油钻探技术, 2014, 42(5):16-20. JIANG T X, BIAN X B, SU Y, et al. A new method for evaluating shale fracability index and its application. Petroleum Drilling Technique, 2014, 42(5):16-20. [8] 车世琦.测井资料用于页岩岩相划分及识别——以涪陵气田五峰组-龙马溪组为例. 岩性油气藏, 2018, 30(1):121-132. CHE S Q. Shale lithofacies identification and classification by using logging data-a case of Wufeng-Longmaxi Formation in Fuling Gas Field, Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):121-132. [9] 赵金洲, 许文俊, 李勇明, 等.页岩气储层可压性评价新方法. 天然气地球科学, 2015, 26(6):1165-1172. ZHAO J Z, XU W J, LI Y M, et al. A new method for fracability evaluation of shale-gas reservoirs. Natural Gas Geoscience, 2015, 26(6):1165-1172. [10] 袁俊亮, 邓金根, 张定宇, 等.页岩气储层可压裂性评价技术. 石油学报, 2013, 34(3):523-527. YUAN J L, DENG J G, ZHANG D Y, et al. Fracability evaluation of shale-gas reservoirs. Acta Petrolei Sinica, 2013, 34(3):523-527. [11] 唐瑞江, 王玮, 王勇军, 等.元坝气田HF-1陆相深层页岩气井分段压裂技术及效果.天然气工业, 2014, 34(12):76-80. TANG R J, WANG W, WANG Y J, et al. Staged fracturing technologies for continental ultra-deep shale gas wells and their effects:a case study of well HF-1 in the Yuanba Gas Field, Sichuan Basin. Natural Gas Industry, 2014, 34(12):76-80. [12] 姜浒, 刘书杰, 何保生, 等.定向射孔对水力压裂多裂缝形态的影响实验.天然气工业, 2014, 34(2):66-70. JIANG H, LIU S J, HE B S, et al. Experiments of the oriented perforating impact on the multi-fracture pattern of hydraulic fracturing treatment. Natural Gas Industry, 2014, 34(2):66-70. [13] 张广清, 陈勉, 杨艳波.新井定向射孔转向压裂裂缝起裂与延伸机理研究.石油学报, 2008, 29(1):116-119. ZHANG G Q, CHEN M, YANG Y B. Study on initiation and propagation mechanism of fractures in oriented perforation of new wells. Acta Petrolei Sinica, 2008, 29(1):116-119. [14] 王跃鹏, 刘向君, 梁利喜.页岩力学特性的层理效应及脆性预测.岩性油气藏, 2018, 30(4):149-160. WANG Y P, LIU X J, LIANG L X. Influences of bedding planes on mechanical properties and prediction method of brittleness index in shale. Lithologic Reservoirs, 2018, 30(4):149-160. [15] 蒋建方, 杨劲舟, 刘光普. 压裂液基液黏度对压开地层的影响.油气井测试, 2013, 22(6):36-38. JIANG J F, YANG J Z, LIU G P. Influence of base fracturing fluid viscosity on breaking layer. Well Testing, 2013, 22(6):36-38. [16] 范铁刚, 张广清.注液速率及压裂液黏度对煤层水力裂缝形态的影响. 中国石油大学学报(自然科学版), 2014, 38(4):117-123. FAN T G, ZHANG G Q. Influence of injection rate and fracturing fluid viscosity on hydraulic fracture geometry in coal. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(4):117-123. [17] 王海涛, 蒋廷学, 卞晓冰, 等.深层页岩压裂工艺优化与现场试验.石油钻探技术, 2016, 44(2):76-81. WANG H T, JIANG T X, BIAN X B, et al. Optimization and field application of hydraulic fracturing techniques in deep shale reservoirs. Petroleum Drilling Techniques, 2016, 44(2):76-81. [18] POPE C, PETERS B, BENTON T, et al. Haynesville shale-one operator's approach to well completions in this evolving play. SPE 125079, 2009. [19] POPE C, PALISCH T, LOLON E, et al. Improving stimulation effectiveness:Field results in the Haynesville shale. SPE 134165, 2010. [20] 尚希涛, 何顺利, 刘广峰, 等.水平井分段压裂破裂压力计算. 石油钻采工艺, 2009, 31(2):96-100. SHANG X T, HE S L, LIU G F, et al. Breakdown pressure calculation of staged fracturing for horizontal wells. Oil Drilling & Production Technology, 2009, 31(2):96-100. [21] 金衍, 陈勉, 张旭东.利用测井资料预测深部地层岩石断裂韧性.岩石力学与工程学报, 2001, 20(4):454-456. JIN Y, CHEN M, ZHANG X D. Determination of fracture toughness for deep well rock with geophysical logging data. Chinese Journal of Rock Mechanic Sand Engineering, 2001, 20(4):454-456. [22] 张健, 敬季昀, 王杏尊.利用小型压裂短时间压降数据快速获取储层参数的新方法. 岩性油气藏, 2018, 30(4):133-139. ZHANG J, JING J Y, WANG X Z. New method for obtaining reservoir parameters with a short time of pressure drop after mini-fracturing. Lithologic Reservoirs, 2018, 30(4):133-139. [23] 侯冰, 陈勉, 程万, 等.页岩气储层变排量压裂的造缝机制. 岩土工程学报, 2014, 36(11):2149-2152. HOU B, CHEN M, CHENG W, et al. Fracture mechanism on shale gas reservoir fracturing with variable pump rate. Chinese Journal of Geotechnical Engineering, 2014, 36(11):2149-2152. [24] 刘建坤, 蒋廷学, 万有余, 等.致密砂岩薄层压裂工艺技术研究及应用. 岩性油气藏, 2018, 30(1):165-172. LIU J K, JIANG T X, WAN Y Y, et al. Fracturing technology for thin layer in tight sandstone reservoir and its application. Lithologic Reservoirs, 2018, 30(1):165-172. [25] 樊凤玲, 李宪文, 曹宗熊, 等.致密油层体积压裂排量优化方法.西安石油大学学报(自然科学版), 2014, 29(3):79-82. FAN F L, LI X W, CAO Z X, et al. Optimization of pumping rate for volume fracturing of tight reservoir. Journal of Xi'an Shiyou University(Natural Science Edition), 2014, 29(3):79-82. [26] 魏斌, 陈平, 张冕, 等.变排量压裂技术及其现场应用.石油钻采工艺, 2000, 22(6):70-71. WEI B, CHEN P, ZHANG M, et al. Fracturing technology with alteration discharge capacity and it's field application. Oil Drilling & Production Technology, 2000, 22(6):70-71. [27] 韩婧婧, 刘建, 武龙.鄂尔多斯盆地长6致密砂岩油藏压裂技术研究.岩性油气藏, 2017, 29(1):130-134. HAN J J, LIU J, WU L. Fracturing technology of Chang 6 tight sandstone reservoir in Ordos Basin. Lithologic Reservoirs, 2017, 29(1):130-134. |
[1] | 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24. |
[2] | 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71. |
[3] | 邱晨, 闫建平, 钟光海, 李志鹏, 范存辉, 张悦, 胡钦红, 黄毅. 四川盆地泸州地区奥陶系五峰组—志留系龙马溪组页岩沉积微相划分及测井识别[J]. 岩性油气藏, 2022, 34(3): 117-130. |
[4] | 卞晓冰, 侯磊, 蒋廷学, 高东伟, 张驰. 深层页岩裂缝形态影响因素[J]. 岩性油气藏, 2019, 31(6): 161-168. |
|