岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 148–153.doi: 10.12108/yxyqc.20220115

• 勘探技术 • 上一篇    下一篇

基于GPU并行加速的黏声最小二乘逆时偏移及应用

张猛   

  1. 中国石化胜利油田分公司物探研究院, 山东东营 257022
  • 收稿日期:2021-06-07 修回日期:2021-09-02 发布日期:2022-01-21
  • 作者简介:张猛(1978-),男,博士,高级工程师,主要从事地震偏移成像、人工智能、地层Q值反演与应用、信号分析及石油勘探软件研发等方面的工作。地址:(257022)山东省东营市北一路210号中国石化胜利油田物探研究院物探方法室。Email:zhangmeng886.slyt@sinopec.com。
  • 基金资助:
    中国石化股份公司项目“基于AI地震资料自动化处理技术研究”(编号:P20052-2)资助

Least-squares reverse time migration in visco-acoustic medium based on GPU parallel acceleration and its application

ZHANG Meng   

  1. Geophysical Research Institute, Sinopec Shengli Oilfield Company, Dongying 257022, Shandong, China
  • Received:2021-06-07 Revised:2021-09-02 Published:2022-01-21

摘要: 常规逆时偏移算法(RTM)在浅层成像中容易产生较强的低频噪声,无法消除地球介质的吸收衰减效应。基于广义标准线性固体模型,建立黏声波动方程,在Born正演和梯度计算2个核心算法过程中开展了GPU加速,建立了黏声最小二乘逆时偏移实现流程,并将该方法应用在胜利油田某探区三维资料中,结果显示,计算效率和偏移成像质量都得到了有效提升。并且开展了与常规声波最小二乘逆时偏移的对比和分析工作,结果表明该方法对提升深层储层成像精度,实现真振幅成像,以及岩性油气藏的勘探都具有重要的意义。

关键词: GPU并行加速, 黏声介质, 最小二乘逆时偏移, 波动方程

Abstract: Conventional reverse time migration(RTM) algorithm is easy to produce strong low-frequency noise in shallow imaging, which cannot eliminate the absorption attenuation effect of earth medium. Based on the generalized standard linear solid model, the visco-acoustic wave equation was established, GPU acceleration was carried out in the two core algorithms of Born forward and gradient calculation, and the implementation process of leastsquares reverse time migration algorithm in visco-acoustic medium was proposed. The method was applied to a 3D data in the exploration area of Shengli Oilfield. The results show that the calculation efficiency and migration imaging quality are improved effectively. The comparison with conventional acoustic least-squares reverse time migration was carried out. The results show that this method is of great significance to improve the imaging accuracy of deep reservoirs, realize true amplitude imaging, and explore lithologic reservoirs.

Key words: GPU parallel acceleration, visco-acoustic medium, least-squares reverse time migration, wave equation

中图分类号: 

  • P631.4
[1] 陈可洋.逆时成像技术在大庆探区复杂构造成像中的应用. 岩性油气藏, 2017, 29(6):91-100. CHEN K Y. Application of reverse-time migration technology to complex structural imaging in Daqing exploration area. Lithologic Reservoirs, 2017, 29(6):91-100.
[2] 陈可洋, 陈树民, 李来林, 等.地震波动方程方向行波波场分离正演数值模拟与逆时成像.岩性油气藏, 2014, 26(4):130-136. CHEN K Y, CHEN S M, LI L L, et al. Directional one-way wave field separating numerical simulation of the seismic wave equation and reverse-time migration. Lithologic Reservoirs, 2014, 26(4):130-136.
[3] TRAANTOLA A. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49(8):1259-1266.
[4] TARANTOLA A. Theoretical background for the inversion of seismic waveforms,including elasticity and attenuation//AKI K, WU R S. Scattering and attenuation of seismic waves, Part I. Basel:Birkhäuser, 1988:365-399.
[5] TARANTOLA A. Linearized inversion of seismic reflection data. Geophysical Prospecting, 1984, 32(6):998-1015.
[6] BAMBERGER A, CHAVENT G, HEMON C, et al. Inversion of normal incidence seismograms. Geophysics, 1982, 47(5):757-770.
[7] NEMETH T, WU C, SCHUSTER G T. Least-squares migration of incomplete reflection data. Geophysics, 1999, 64(1):208-221.
[8] CHAVENT G, PLESSIX R. An optimal true-amplitude leastsquares pre-stack depth-migration operator. Geophysics, 1999, 64(2):508-515.
[9] 刘梦丽, 徐兴荣, 王小卫, 等. 预条件弹性介质最小二乘逆时偏移.岩性油气藏, 2020, 32(5):133-142. LIU M L, XU X R, WANG X W, et al. Preconditioning elastic least-squares reverse time migration. Lithologic Reservoirs, 2020, 32(5):133-142.
[10] 刘桓, 苏勤, 曾华会, 等. 近地表Q补偿技术在川中地区致密气勘探中的应用.岩性油气藏, 2021, 33(3):104-112. LIU H, SU Q, ZENG H H, et al. Application of near-surface Q compensation technology in tight gas exploration in central Sichuan Basin. Lithologic Reservoirs, 2021, 33(3):104-112.
[11] AKI K, RICHARDS P G. Quantitative seismology. San Francisco:W. H. Freeman & Co, 1980.
[12] AKI K, BOUCHON M, REASENBERG P. Seismic source function for an underground nuclear explosion. Bulletin of the Seismological Society of America, 1974, 64(1):131-148.
[13] AKI K. Analysis of the seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research, 1969, 74(2):615631.
[14] MULDER W A, HAK B. An ambiguity in attenuation scattering imaging. Geophysical Journal International, 2009, 178(3):1614-1624.
[15] HAK B, MULDER W A. Migration for velocity and attenuation perturbations. Geophysical Prospecting, 2010, 58(6):939-951.
[16] 王雪君, 任浩然, 江金生, 等.基于点扩散函数的黏声介质反演成像.石油物探, 2019, 58(1):78-87. WANG X J, REN H R, JIANG J S, et al. Inversion imaging based on point spreading function for visco-acoustic medium. Geophysical Prospecting for Petroleum, 2019, 58(1):78-87.
[17] 李振春, 郭振波, 田坤.黏声介质最小平方逆时偏移.地球物理学报, 2014, 57(1):214-228. LI Z C, GUO Z B, TIAN K. Least-squares reverse time migration in visco-acoustic medium. Chinese Journal of Geophysics, 2014, 57(1):214-228.
[18] 赵磊, 王华忠, 刘守伟.逆时深度偏移成像方法及其在CPU/GPU异构平台上的实现.岩性油气藏, 2010, 22(增刊1):36-41. ZHAO L, WANG H Z, LIU S W. Reverse time migration method and its implementation on CPU/GPU heterogeneous platform. Lithologic Reservoirs, 2010, 22(Suppl 1):36-41.
[19] MICIKEVICIUS P. 3D finite difference computation on GPUs using CUDA. Washington:Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, GPGPU, 2009.
[20] ZHANG M, SUI Z Q, WANG H Z, et al. Full waveform inversion on CPU/GPU heterogeneous platform and its application on land datasets. Beijing:2014 International Geophysical Conference & Exposition, 2014.
[21] 郭振波, 李振春.最小平方逆时偏移真振幅成像.石油地球物理勘探, 2014, 49(1):113-120. GUO Z B, LI Z C. True-amplitude imaging based on least-squares reverse time migration. Oil Geophysical Prospecting, 2014, 49(1):113-120.
[22] CAUSSE E, URSIN B. Visco-acoustic reverse-time migration. Journal of Seismic Exploration, 2000, 9(2):165-183.
[23] CHAVENT G, PLESSIX R E. An optimal true-amplitude leastsquares pre-stack depth-migration operator. Geophysics, 1999, 64(2):508-515.
[24] 崔宏良, 刘占军, 万学娟, 等. 拟合Q体建模技术及应用.岩性油气藏, 2015, 27(3):94-97. CUI H L, LIU Z J, WAN X J, et al. Application of fitting stereoscopic Q modeling technology. Lithologic Reservoirs, 2015, 27(3):94-97.
[25] 李庆忠.走向精确勘探的道路.北京:石油工业出版社, 1993. LI Q Z. The way to precise exploration. Beijing:Petroleum Industry Press, 1993.
[1] 刘丽. 埕岛油田馆陶组曲流河砂体叠置模式[J]. 岩性油气藏, 2019, 31(1): 40-48.
[2] 邓帅, 刘学伟, 王祥春. 上覆水平界面对目的层地震波振幅的影响[J]. 岩性油气藏, 2017, 29(3): 118-125.
[3] 陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟[J]. 岩性油气藏, 2014, 26(5): 91-96.
[4] 陈可洋,陈树民,李来林,吴清岭,范兴才,刘振宽. 地震波动方程方向行波波场分离正演数值模拟与逆时成像[J]. 岩性油气藏, 2014, 26(4): 130-136.
[5] 吕姗姗,熊晓军,贺振华. 基于波动方程的AVO 模型数值模拟方法研究[J]. 岩性油气藏, 2011, 23(6): 102-105.
[6] 陈可洋. 井间弹性波波场散射特征数值模拟分析[J]. 岩性油气藏, 2011, 23(3): 91-96.
[7] 边立恩, 贺振华, 黄德济. 饱含流体介质的地震波场特征及频率分布[J]. 岩性油气藏, 2008, 20(3): 74-78.
[8] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱小燕, 王斌婷, 胡建基, 苟迎春. 南庄地区三叠系长6 储集层研究[J]. 岩性油气藏, 2007, 19(1): 77 -80 .
[2] 郭康良, 郭旗, 程时清. 凝析气藏水平井产能计算模型及方法研究[J]. 岩性油气藏, 2007, 19(1): 120 -123 .
[3] 李冬梅. TH 油田凝析气藏水平井试井合理压差的确定[J]. 岩性油气藏, 2007, 19(1): 130 -133 .
[4] 金凤鸣,赵贤正,邹伟宏,卢学军,史原鹏,曹兰柱,芦丽菲. 二连盆地地层岩性油藏“多元控砂—四元成藏—主元富集”与勘探实践( Ⅱ)———“四元成藏”机理[J]. 岩性油气藏, 2007, 19(3): 23 -27 .
[5] 孔祥宇,殷进垠,张发强. 哈萨克斯坦南图尔盖盆地油气地质特征及勘探潜力分析[J]. 岩性油气藏, 2007, 19(3): 48 -53 .
[6] 刘树根, 黄文明, 张长俊, 赵霞飞, 戴苏兰, 张志敬, 秦川. 四川盆地白云岩成因的研究现状及存在问题[J]. 岩性油气藏, 2008, 20(2): 6 -15 .
[7] 王辉, 张玉芬. 基于模型的叠前数据多参数非线性反演[J]. 岩性油气藏, 2008, 20(2): 108 -113 .
[8] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[9] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[10] 张景廉,石兰亭,卫平生. 黄骅坳陷深部地壳构造及流体特征与潜山油气藏勘探远景[J]. 岩性油气藏, 2009, 21(2): 1 -6 .