岩性油气藏 ›› 2022, Vol. 34 ›› Issue (1): 148–153.doi: 10.12108/yxyqc.20220115

• 勘探技术 • 上一篇    下一篇

基于GPU并行加速的黏声最小二乘逆时偏移及应用

张猛   

  1. 中国石化胜利油田分公司物探研究院, 山东东营 257022
  • 收稿日期:2021-06-07 修回日期:2021-09-02 出版日期:2022-01-01 发布日期:2022-01-21
  • 第一作者:张猛(1978-),男,博士,高级工程师,主要从事地震偏移成像、人工智能、地层Q值反演与应用、信号分析及石油勘探软件研发等方面的工作。地址:(257022)山东省东营市北一路210号中国石化胜利油田物探研究院物探方法室。Email:zhangmeng886.slyt@sinopec.com。
  • 基金资助:
    中国石化股份公司项目“基于AI地震资料自动化处理技术研究”(编号:P20052-2)资助

Least-squares reverse time migration in visco-acoustic medium based on GPU parallel acceleration and its application

ZHANG Meng   

  1. Geophysical Research Institute, Sinopec Shengli Oilfield Company, Dongying 257022, Shandong, China
  • Received:2021-06-07 Revised:2021-09-02 Online:2022-01-01 Published:2022-01-21

摘要: 常规逆时偏移算法(RTM)在浅层成像中容易产生较强的低频噪声,无法消除地球介质的吸收衰减效应。基于广义标准线性固体模型,建立黏声波动方程,在Born正演和梯度计算2个核心算法过程中开展了GPU加速,建立了黏声最小二乘逆时偏移实现流程,并将该方法应用在胜利油田某探区三维资料中,结果显示,计算效率和偏移成像质量都得到了有效提升。并且开展了与常规声波最小二乘逆时偏移的对比和分析工作,结果表明该方法对提升深层储层成像精度,实现真振幅成像,以及岩性油气藏的勘探都具有重要的意义。

关键词: GPU并行加速, 黏声介质, 最小二乘逆时偏移, 波动方程

Abstract: Conventional reverse time migration(RTM) algorithm is easy to produce strong low-frequency noise in shallow imaging, which cannot eliminate the absorption attenuation effect of earth medium. Based on the generalized standard linear solid model, the visco-acoustic wave equation was established, GPU acceleration was carried out in the two core algorithms of Born forward and gradient calculation, and the implementation process of leastsquares reverse time migration algorithm in visco-acoustic medium was proposed. The method was applied to a 3D data in the exploration area of Shengli Oilfield. The results show that the calculation efficiency and migration imaging quality are improved effectively. The comparison with conventional acoustic least-squares reverse time migration was carried out. The results show that this method is of great significance to improve the imaging accuracy of deep reservoirs, realize true amplitude imaging, and explore lithologic reservoirs.

Key words: GPU parallel acceleration, visco-acoustic medium, least-squares reverse time migration, wave equation

中图分类号: 

  • P631.4
[1] 陈可洋.逆时成像技术在大庆探区复杂构造成像中的应用. 岩性油气藏, 2017, 29(6):91-100. CHEN K Y. Application of reverse-time migration technology to complex structural imaging in Daqing exploration area. Lithologic Reservoirs, 2017, 29(6):91-100.
[2] 陈可洋, 陈树民, 李来林, 等.地震波动方程方向行波波场分离正演数值模拟与逆时成像.岩性油气藏, 2014, 26(4):130-136. CHEN K Y, CHEN S M, LI L L, et al. Directional one-way wave field separating numerical simulation of the seismic wave equation and reverse-time migration. Lithologic Reservoirs, 2014, 26(4):130-136.
[3] TRAANTOLA A. Inversion of seismic reflection data in the acoustic approximation. Geophysics, 1984, 49(8):1259-1266.
[4] TARANTOLA A. Theoretical background for the inversion of seismic waveforms,including elasticity and attenuation//AKI K, WU R S. Scattering and attenuation of seismic waves, Part I. Basel:Birkhäuser, 1988:365-399.
[5] TARANTOLA A. Linearized inversion of seismic reflection data. Geophysical Prospecting, 1984, 32(6):998-1015.
[6] BAMBERGER A, CHAVENT G, HEMON C, et al. Inversion of normal incidence seismograms. Geophysics, 1982, 47(5):757-770.
[7] NEMETH T, WU C, SCHUSTER G T. Least-squares migration of incomplete reflection data. Geophysics, 1999, 64(1):208-221.
[8] CHAVENT G, PLESSIX R. An optimal true-amplitude leastsquares pre-stack depth-migration operator. Geophysics, 1999, 64(2):508-515.
[9] 刘梦丽, 徐兴荣, 王小卫, 等. 预条件弹性介质最小二乘逆时偏移.岩性油气藏, 2020, 32(5):133-142. LIU M L, XU X R, WANG X W, et al. Preconditioning elastic least-squares reverse time migration. Lithologic Reservoirs, 2020, 32(5):133-142.
[10] 刘桓, 苏勤, 曾华会, 等. 近地表Q补偿技术在川中地区致密气勘探中的应用.岩性油气藏, 2021, 33(3):104-112. LIU H, SU Q, ZENG H H, et al. Application of near-surface Q compensation technology in tight gas exploration in central Sichuan Basin. Lithologic Reservoirs, 2021, 33(3):104-112.
[11] AKI K, RICHARDS P G. Quantitative seismology. San Francisco:W. H. Freeman & Co, 1980.
[12] AKI K, BOUCHON M, REASENBERG P. Seismic source function for an underground nuclear explosion. Bulletin of the Seismological Society of America, 1974, 64(1):131-148.
[13] AKI K. Analysis of the seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research, 1969, 74(2):615631.
[14] MULDER W A, HAK B. An ambiguity in attenuation scattering imaging. Geophysical Journal International, 2009, 178(3):1614-1624.
[15] HAK B, MULDER W A. Migration for velocity and attenuation perturbations. Geophysical Prospecting, 2010, 58(6):939-951.
[16] 王雪君, 任浩然, 江金生, 等.基于点扩散函数的黏声介质反演成像.石油物探, 2019, 58(1):78-87. WANG X J, REN H R, JIANG J S, et al. Inversion imaging based on point spreading function for visco-acoustic medium. Geophysical Prospecting for Petroleum, 2019, 58(1):78-87.
[17] 李振春, 郭振波, 田坤.黏声介质最小平方逆时偏移.地球物理学报, 2014, 57(1):214-228. LI Z C, GUO Z B, TIAN K. Least-squares reverse time migration in visco-acoustic medium. Chinese Journal of Geophysics, 2014, 57(1):214-228.
[18] 赵磊, 王华忠, 刘守伟.逆时深度偏移成像方法及其在CPU/GPU异构平台上的实现.岩性油气藏, 2010, 22(增刊1):36-41. ZHAO L, WANG H Z, LIU S W. Reverse time migration method and its implementation on CPU/GPU heterogeneous platform. Lithologic Reservoirs, 2010, 22(Suppl 1):36-41.
[19] MICIKEVICIUS P. 3D finite difference computation on GPUs using CUDA. Washington:Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, GPGPU, 2009.
[20] ZHANG M, SUI Z Q, WANG H Z, et al. Full waveform inversion on CPU/GPU heterogeneous platform and its application on land datasets. Beijing:2014 International Geophysical Conference & Exposition, 2014.
[21] 郭振波, 李振春.最小平方逆时偏移真振幅成像.石油地球物理勘探, 2014, 49(1):113-120. GUO Z B, LI Z C. True-amplitude imaging based on least-squares reverse time migration. Oil Geophysical Prospecting, 2014, 49(1):113-120.
[22] CAUSSE E, URSIN B. Visco-acoustic reverse-time migration. Journal of Seismic Exploration, 2000, 9(2):165-183.
[23] CHAVENT G, PLESSIX R E. An optimal true-amplitude leastsquares pre-stack depth-migration operator. Geophysics, 1999, 64(2):508-515.
[24] 崔宏良, 刘占军, 万学娟, 等. 拟合Q体建模技术及应用.岩性油气藏, 2015, 27(3):94-97. CUI H L, LIU Z J, WAN X J, et al. Application of fitting stereoscopic Q modeling technology. Lithologic Reservoirs, 2015, 27(3):94-97.
[25] 李庆忠.走向精确勘探的道路.北京:石油工业出版社, 1993. LI Q Z. The way to precise exploration. Beijing:Petroleum Industry Press, 1993.
[1] 刘丽. 埕岛油田馆陶组曲流河砂体叠置模式[J]. 岩性油气藏, 2019, 31(1): 40-48.
[2] 邓帅, 刘学伟, 王祥春. 上覆水平界面对目的层地震波振幅的影响[J]. 岩性油气藏, 2017, 29(3): 118-125.
[3] 陈可洋. 各向异性弹性介质方向行波波场分离正演数值模拟[J]. 岩性油气藏, 2014, 26(5): 91-96.
[4] 陈可洋,陈树民,李来林,吴清岭,范兴才,刘振宽. 地震波动方程方向行波波场分离正演数值模拟与逆时成像[J]. 岩性油气藏, 2014, 26(4): 130-136.
[5] 吕姗姗,熊晓军,贺振华. 基于波动方程的AVO 模型数值模拟方法研究[J]. 岩性油气藏, 2011, 23(6): 102-105.
[6] 陈可洋. 井间弹性波波场散射特征数值模拟分析[J]. 岩性油气藏, 2011, 23(3): 91-96.
[7] 边立恩, 贺振华, 黄德济. 饱含流体介质的地震波场特征及频率分布[J]. 岩性油气藏, 2008, 20(3): 74-78.
[8] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .