岩性油气藏 ›› 2022, Vol. 34 ›› Issue (4): 32–41.doi: 10.12108/yxyqc.20220404

• 地质勘探 • 上一篇    下一篇

鄂尔多斯盆地三叠系长7富有机质段岩石热膨胀系数随温度演化特征及启示

张岩1, 侯连华1, 崔景伟1,2, 罗霞1, 林森虎1, 张紫芸1   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 中国石油油气储层重点实验室, 北京 100083
  • 收稿日期:2021-08-16 修回日期:2021-10-20 出版日期:2022-07-01 发布日期:2022-07-07
  • 通讯作者: 侯连华(1970-),男,博士,教授级高级工程师,主要从事非常规油气地质方面的研究工作。Email:houlh@petrochina.com.cn。 E-mail:houlh@petrochina.com.cn
  • 作者简介:张岩(1996-),男,中国石油勘探开发研究院在读硕士研究生,研究方向为非常规油气地质。地址:(100083)北京市海淀区学院路20号中国石油勘探开发研究院。Email:Halite_zy@163.com
  • 基金资助:
    国家重点基础研究发展计划“中国陆相致密油(页岩油)形成机理与富集规律”(编号:2014CB239001)资助

Evolution characteristics of thermal expansion coefficient of rocks with temperature of Triassic Chang 7 organic-rich reservoir and its implications in Ordos Basin

ZHANG Yan1, HOU Lianhua1, CUI Jingwei1,2, LUO Xia1, LIN Senhu1, ZHANG Ziyun1   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. Key Laboratory of Petroleum Reservoir, PetroChina, Beijing 100083, China
  • Received:2021-08-16 Revised:2021-10-20 Online:2022-07-01 Published:2022-07-07

摘要: 页岩油地下原位转化技术的应用是实现中低成熟度页岩油规模开发利用的有效手段,加热过程中页岩的热膨胀研究对于井眼稳定性、加热器寿命以及盖层完整性等工程评价具有重要意义。选取鄂尔多斯盆地三叠系长7页岩段3口取心井的岩心,在常规镜下薄片观察、X射线衍射分析基础上,采用DIL402 SE型热膨胀仪获得25~600℃下泥质粉砂岩、泥岩和黑色页岩的热膨胀系数及其动态演化特征。研究结果表明:①鄂尔多斯盆地三叠系长7富有机质段不同岩性的热膨胀系数存在较大差异,并随有机碳含量(TOC)的升高而增大。当TOC值小于5%时,岩石热膨胀系数“近指数型”增大;当TOC值大于等于5%时,岩石热膨胀系数呈“四段式”复杂变化。②研究区富有机质页岩的热膨胀系数各向异性因子最大,垂直层理方向上是平行层理方向上的1.7~2.7倍。③富有机质页岩生烃强度大,能产生微裂缝并导致热膨胀复杂变化。

关键词: 原位转化技术, 富有机质页岩, 热膨胀系数, 各向异性因子, 动态演化, 长7页岩, 三叠系, 鄂尔多斯盆地

Abstract: In-situ conversion processing(ICP)of shale underground is an effective and feasible option to realize the size development and utilization of medium to low-mature shale oil. The study of thermal expansion of shale during heating is of great significance for the engineering evaluation of wellbore stability,heater life and cap rock integrity. The thermal expansion coefficients and dynamic evolution characteristics of muddy siltstone,mudstone and shale at 25-600℃ were obtained by using DIL402 SE instrument on the basis of thin section observation and X-ray diffraction analysis of cores from three wells of Triassic Chang 7 shale layer in Ordos Basin. The results show that:(1)The thermal expansion coefficients of rocks with different lithologies in the study area differ greatly and increase with the increase of organic carbon content. The thermal expansion coefficients of rocks with TOC being less than 5% increase almost exponentially,while the thermal expansion coefficients of rocks with TOC being greater than or equal to 5% show a "four stage" complex change.(2)The anisotropy factor of the thermal expansion coefficients of organic-rich shale in the study area is the largest,which is 1.7-2.7 times in vertical bedding direction than that in parallel bedding direction.(3)The high hydrocarbon generation intensity of organic-rich shale can cause microfractures and lead to complex changes in thermal expansion.

Key words: in-situ conversion technology, organic-rich shale, thermal expansion coefficient, anisotropy factor, dynamic evolution, Chang 7 shale, Triassic, Ordos Basin

中图分类号: 

  • TE133+9
[1] 邹才能, 杨智, 张国生, 等.非常规油气地质学建立及实践[J]. 地质学报, 2019, 93(1):12-23. ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Establishment and practice of unconventional oil and gas geology[J]. Acta Geologica Sinica, 2019, 93(1):12-23.
[2] 杨智, 侯连华, 陶士振, 等.致密油与页岩油形成条件与"甜点区"评价[J].石油勘探与开发, 2015, 42(5):555-565. YANG Zhi, HOU Lianhua, TAO Shizhen, et al.Formation conditions and "sweet spot" evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5):555-565.
[3] 赵文智, 胡素云, 侯连华.页岩油地下原位转化的内涵与战略地位[J].石油勘探与开发, 2018, 45(4):537-545. ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4):537-545.
[4] 张林晔, 李钜源, 李政, 等.北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展, 2014, 29(6):700-711. ZHANG Linye, LI Juyuan, LI Zheng, et al.Advances in shale oil/gas research in North America and considerations on explora-tion for continental shale oil/gas in China[J]. Advances in Earth Science, 2014, 29(6):700-711.
[5] SIRATOVICH P A, VON AULOCK F W,LAVALLÉE Y, et al. Thermoelastic properties of the Rotokawa andesite:A geothermal reservoir constraint[J]. Journal of Volcanology and Geothermal Research, 2015, 301:1-13.
[6] 马海佳, 张海军, 张冶.基于THM的井壁稳定性分析[J].大庆石油学院学报, 2008, 32(6):50-55. MA Haijia, ZHANG Haijun, ZHANG Ye. Well bore stability based on THM[J]. Journal of Daqing Petroleum Institute, 2008, 32(6):50-55.
[7] 马天寿, 陈平.页岩地层中孔隙热弹性井眼稳定力学模型[J]. 岩石力学与工程学报, 2015, 34(增刊2):3613-3623. MA Tianshou, CHEN Ping. Porothermoelastic mechanical model of wellbore stability in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 2):3613- 3623.
[8] 苗社强, 李和平, 周永胜.推杆式热膨胀仪测量三种岩石高温热膨胀系数[J].吉林大学学报(地球科学版), 2015, 45(增刊1):345. MIAO Sheqiang, LI Heping, ZHOU Yongsheng. Measurement of thermal expansion coefficients of three kinds of rocks with push-rod thermal dilatometer at high temperature[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(Suppl 1):345.
[9] 刘海涛, 周辉, 胡大伟, 等.含层理砂岩热膨胀系数的试验研究[J].岩土力学, 2017, 38(10):2841-2846. LIU Haitao, ZHOU Hui, HU Dawei, et al. Experiment study of thermal expansion coefficient of sandstone with beddings[J]. Rock and Soil Mechanics, 2017, 38(10):2841-2846.
[10] 董付科, 冯子军, 杨栋.高温三轴应力下新疆吉木萨尔油页岩热变形特征研究[J].煤炭工程, 2019, 51(3):103-106. DONG Fuke, FENG Zijun, YANG Dong. Thermal deformation characteristics of Jimsar oil shale in Xinjiang under high temperature and triaxial stresses[J]. Coal Engineering, 2019, 51(3):103-106.
[11] GABOVA A, CHEKHONIN E, POPOV Y, et al. Experimental investigation of thermal expansion of organic-rich shales[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132:104398.
[12] 郤保平, 何水鑫, 吴阳春, 等.原位应力状态下花岗岩热变形及热膨胀系数演变规律试验研究[J].岩土力学, 2020, 41(增刊2):1-11. XI Baoping, HE Shuixin, WU Yangchun, et al. Experimental study on evolution law of thermal deformation and thermal expansion coefficient of granite under in-situ stress state[J]. Rock and Soil Mechanics, 2020, 41(Suppl 2):1-11.
[13] 杨华, 刘显阳, 张才利, 等.鄂尔多斯盆地三叠系延长组低渗透岩性油藏主控因素及其分布规律[J].岩性油气藏, 2007, 19(3):1-6. YANG Hua, LIU Xianyang, ZHANG Caili, et al. The main controlling factors and distribution of low permeability lithologic reservoirs of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(3):1-6.
[14] 黄彦杰, 白玉彬, 孙兵华, 等.鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J].岩性油气藏, 2020, 32(1):66-75. HUANG Yanjie, BAI Yubin, SUN Binghua, et al. Characteristics and evaluation of Chang 7 source rock of Yanchang Formation in Fuxian area, Ordos Basin[J].Lithologic Reservoirs, 2020, 32(1):66-75.
[15] 李森, 朱如凯, 崔景伟, 等.古环境与有机质富集控制因素研究:以鄂尔多斯盆地南缘长7油层组为例[J]. 岩性油气藏, 2019, 31(1):87-95. LI Sen, ZHU Rukai, CUI Jinwei, et al. Paleoenvironment and controlling factors of organic matter enrichment:A case of Chang 7 oil reservoir in southern margin of Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(1):87-95.
[16] 国吉安, 庞军刚, 王桂成, 等.鄂尔多斯盆地晚三叠世延长组湖盆演化及石油聚集规律[J]. 世界地质, 2010, 29(2):277- 283. GUO Ji'an, PANG Jungang, WANG Guicheng, et al. Lake basin evolution and petroleum accumulation of Late Triassic Yanchang Formation in Ordos Basin[J]. Global Geology, 2010, 29(2):277-283.
[17] DUAN Y, WANG C Y, ZHENG C Y, et al. Geochemical study of crude oils from the Xifeng oilfield of the Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2008, 31(4/5/6):341-356.
[18] HARVEY R D.Thermal expansion of certain Illinois limestones[D]. Urbana:Illinois State Geological Survey, 1966.
[19] SOMERTON W H.Thermal properties and temperature-related behavior of rock/fluid systems[J]. Developments in Petroleum Science, 1992, 37:1-257.
[20] YARZEV V P, EROFEEV A V. Operating properties and durability of bitumen-polymer composites[M]. Tambov:FGBOU VPO, TGTU, 2004.
[21] ANDERSON D L. Theory of the earth[M]. Boston:Blackwell Scientific Publications, 1989.
[22] KAEVAND T, LILLE U. Atomistic molecular simulation of thermal volume expansion of Estonian kukersite kerogen[J]. Oil Shale, 2005, 22(3):291-303.
[23] HOU Lianhua, MA Weijiao, LUO Xia, et al.Characteristics and quantitative models for hydrocarbon generation-retentionproduction of shale under ICP conditions:Example from the Chang 7 member in the Ordos Basin[J]. Fuel, 2020, 279:118497.
[24] 于永军, 梁卫国, 毕井龙, 等.油页岩热物理特性试验与高温热破裂数值模拟研究[J].岩石力学与工程学报, 2015, 34(6):1106-1115. YU Yongjun, LIANG Weiguo, BI Jinglong, et al. Thermophysical experiment and numerical simulation on thermal cracking of oil shale at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1106-1115.
[25] 吕超, 孙强, 邓舒, 等.砂岩热物理性质的温度作用效应试验研究[J].地质与勘探, 2017, 53(4):780-787. LYU Chao, SUN Qiang, DENG Shu, et al. An experimental study on thermal physical properties of sandstone under hightemperature heating[J]. Geology and Exploration, 2017, 53(4):780-787.
[26] WEAVER C E.Thermal properties of clays and shales[R]. Oak Ridge, US:Technical Report, 1976.
[27] OJA V, YANCHILIN A, KAN T, et al. Thermo-swelling behavior of Kukersite oil shale[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(2):1163-1169.
[28] MA Weijiao, HOU Lianhua, LUO Xiao, et al. Generation and expulsion process of the Chang 7 oil shale in the Ordos Basin based on temperature-based semi-open pyrolysis:Implications for in-situ conversion process[J]. Journal of Petroleum Science and Engineering, 2020, 190:107035.
[29] ZHOU Hui, LIU Haitao, HU Dawei, et al. Anisotropies in mechanical behaviour, thermal expansion and p-wave velocity of sandstone with bedding planes[J]. Rock Mechanics and Rock Engineering, 2016, 49:4497-4504.
[30] SIEGESMUND S, ULLEMEYER K, WEISS T, et al. Physical weathering of marbles caused by anisotropic thermal expansion[J]. International Journal of Earth Sciences, 2000, 89(1):170- 182.
[31] WONG Tengfong, BRACE W F. Thermal expansion of rocks:Some measurements at high pressure[J]. Tectonophysics, 1979, 57(2/3/4):95-117.
[1] 阴钰毅, 姚志纯, 郭小波, 王乐立, 陈思谦, 余小雷, 岑向阳. 鄂尔多斯盆地西缘二叠系隐伏构造特征及勘探意义[J]. 岩性油气藏, 2022, 34(4): 79-88.
[2] 张本健, 徐唱, 徐亮, 周刚, 丁熊. 四川盆地东北部三叠系飞三段沉积特征及油气地质意义[J]. 岩性油气藏, 2022, 34(3): 154-163.
[3] 魏钦廉, 王翀峘, 刘军峰, 胡榕, 刘美荣, 吕玉娟. 鄂尔多斯盆地樊家川地区三叠系长63储层特征及主控因素[J]. 岩性油气藏, 2022, 34(2): 31-44.
[4] 田建锋, 高永利, 张蓬勃, 喻建, 张志国. 鄂尔多斯盆地三叠系延长组伊利石包膜成因及其地质意义[J]. 岩性油气藏, 2022, 34(2): 54-65.
[5] 罗振锋, 苏中堂, 廖慧鸿, 黄文明, 马慧, 佘伟. 鄂尔多斯盆地中东部米脂地区奥陶系马五5亚段叠层石白云岩特征及其地质意义[J]. 岩性油气藏, 2022, 34(2): 86-94.
[6] 李阳, 王兴志, 蒲柏宇, 徐昌海, 杨西燕, 朱逸青, 黄梓桑, 康家豪. 四川盆地开江—梁平海槽东侧三叠系飞仙关组鲕滩沉积特征[J]. 岩性油气藏, 2022, 34(2): 116-130.
[7] 王永骁, 付斯一, 张成弓, 范萍. 鄂尔多斯盆地东部山西组2段致密砂岩储层特征[J]. 岩性油气藏, 2021, 33(6): 12-20.
[8] 李博, 崔军平, 李莹, 李金森, 赵金, 陈彦武. 伊陕斜坡吴起地区延长组油气成藏期次分析[J]. 岩性油气藏, 2021, 33(6): 21-28.
[9] 张玉晔, 高建武, 赵靖舟, 张恒, 吴和源, 韩载华, 毛朝瑞, 杨晓. 鄂尔多斯盆地东南部长6油层组致密砂岩成岩作用及其孔隙度定量恢复[J]. 岩性油气藏, 2021, 33(6): 29-38.
[10] 杨水胜, 王汇智, 闫骁龙, 付国民. 鄂尔多斯盆地中南部侏罗系直罗组流体包裹体特征[J]. 岩性油气藏, 2021, 33(6): 39-47.
[11] 冯雪, 高胜利, 刘永涛, 王秀珍. 鄂尔多斯盆地陇东地区延长组三角洲前缘前积结构特征[J]. 岩性油气藏, 2021, 33(6): 48-58.
[12] 邵晓州, 王苗苗, 齐亚林, 贺彤彤, 张晓磊, 庞锦莲, 郭懿萱. 鄂尔多斯盆地平凉北地区长8油藏特征及成藏主控因素[J]. 岩性油气藏, 2021, 33(6): 59-69.
[13] 赵小萌, 郭峰, 彭晓霞, 张翠萍, 郭岭, 师宇翔. 鄂尔多斯盆地安边地区延10砂质辫状河相储层特征及主控因素[J]. 岩性油气藏, 2021, 33(6): 124-134.
[14] 许璟, 贺永红, 马芳侠, 杜彦军, 马浪, 葛云锦, 王瑞生, 郭睿, 段亮. 鄂尔多斯盆地定边油田主力油层有效储层厚度[J]. 岩性油气藏, 2021, 33(5): 107-119.
[15] 张本健, 田云英, 曾琪, 尹宏, 丁熊. 四川盆地西北部三叠系须三段砂砾岩沉积特征[J]. 岩性油气藏, 2021, 33(4): 20-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 4 期 封面目录[J]. 岩性油气藏, 2022, 34(4): 0 .
[2] 柳双权,曹元婷,赵光亮,朱军,史基安,张顺存. 准噶尔盆地陆东—五彩湾地区石炭系火山岩油气藏成藏影响因素研究[J]. 岩性油气藏, 2014, 26(5): 23 -29 .
[3] 傅强, 李璟, 邓秀琴, 赵世杰, 庞锦莲, 孟鹏飞. 沉积事件对深水沉积过程的影响——以鄂尔多斯盆地华庆地区长6油层组为例[J]. 岩性油气藏, 2019, 31(1): 20 -29 .
[4] 淮银超, 张铭, 谭玉涵, 王鑫. 澳大利亚东部S区块煤层气储层特征及有利区预测[J]. 岩性油气藏, 2019, 31(1): 49 -56 .
[5] 李祖兵, 崔俊峰, 宋舜尧, 成亚斌, 卢异, 陈岑. 黄骅坳陷北大港潜山中生界碎屑岩储层特征及成因机理[J]. 岩性油气藏, 2021, 33(2): 81 -92 .
[6] . 2022年 34卷 4 期 目录[J]. 岩性油气藏, 0, (): 2 -1 .
[7] 文华国, 梁金同, 周刚, 邱玉超, 刘四兵, 李堃宇, 和源, 陈浩如. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带[J]. 岩性油气藏, 2022, 34(2): 1 -16 .
[8] 王立锋, 宋瑞有, 陈殿远, 徐涛, 潘光超, 韩光明. 莺歌海盆地D13区新近系黄流组大型海底扇地震识别及含气性预测[J]. 岩性油气藏, 2022, 34(4): 42 -52 .
[9] 康家豪, 王兴志, 谢圣阳, 曾德铭, 杜垚, 张芮, 张少敏, 李阳. 川中地区侏罗系大安寨段页岩岩相类型及储层特征[J]. 岩性油气藏, 2022, 34(4): 53 -65 .
[10] 王茂桢, 吴奎, 郭涛, 惠冠洲, 郝轶伟. 辽东凹陷东南缘古近系沙二段储层特征及控制因素[J]. 岩性油气藏, 2022, 34(4): 66 -78 .