岩性油气藏 ›› 2022, Vol. 34 ›› Issue (4): 32–41.doi: 10.12108/yxyqc.20220404

• 地质勘探 • 上一篇    下一篇

鄂尔多斯盆地三叠系长7富有机质段岩石热膨胀系数随温度演化特征及启示

张岩1, 侯连华1, 崔景伟1,2, 罗霞1, 林森虎1, 张紫芸1   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 中国石油油气储层重点实验室, 北京 100083
  • 收稿日期:2021-08-16 修回日期:2021-10-20 出版日期:2022-07-01 发布日期:2022-07-07
  • 第一作者:张岩(1996-),男,中国石油勘探开发研究院在读硕士研究生,研究方向为非常规油气地质。地址:(100083)北京市海淀区学院路20号中国石油勘探开发研究院。Email:Halite_zy@163.com
  • 通信作者: 侯连华(1970-),男,博士,教授级高级工程师,主要从事非常规油气地质方面的研究工作。Email:houlh@petrochina.com.cn。
  • 基金资助:
    国家重点基础研究发展计划“中国陆相致密油(页岩油)形成机理与富集规律”(编号:2014CB239001)资助

Evolution characteristics of thermal expansion coefficient of rocks with temperature of Triassic Chang 7 organic-rich reservoir and its implications in Ordos Basin

ZHANG Yan1, HOU Lianhua1, CUI Jingwei1,2, LUO Xia1, LIN Senhu1, ZHANG Ziyun1   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. Key Laboratory of Petroleum Reservoir, PetroChina, Beijing 100083, China
  • Received:2021-08-16 Revised:2021-10-20 Online:2022-07-01 Published:2022-07-07

摘要: 页岩油地下原位转化技术的应用是实现中低成熟度页岩油规模开发利用的有效手段,加热过程中页岩的热膨胀研究对于井眼稳定性、加热器寿命以及盖层完整性等工程评价具有重要意义。选取鄂尔多斯盆地三叠系长7页岩段3口取心井的岩心,在常规镜下薄片观察、X射线衍射分析基础上,采用DIL402 SE型热膨胀仪获得25~600℃下泥质粉砂岩、泥岩和黑色页岩的热膨胀系数及其动态演化特征。研究结果表明:①鄂尔多斯盆地三叠系长7富有机质段不同岩性的热膨胀系数存在较大差异,并随有机碳含量(TOC)的升高而增大。当TOC值小于5%时,岩石热膨胀系数“近指数型”增大;当TOC值大于等于5%时,岩石热膨胀系数呈“四段式”复杂变化。②研究区富有机质页岩的热膨胀系数各向异性因子最大,垂直层理方向上是平行层理方向上的1.7~2.7倍。③富有机质页岩生烃强度大,能产生微裂缝并导致热膨胀复杂变化。

关键词: 原位转化技术, 富有机质页岩, 热膨胀系数, 各向异性因子, 动态演化, 长7页岩, 三叠系, 鄂尔多斯盆地

Abstract: In-situ conversion processing(ICP)of shale underground is an effective and feasible option to realize the size development and utilization of medium to low-mature shale oil. The study of thermal expansion of shale during heating is of great significance for the engineering evaluation of wellbore stability,heater life and cap rock integrity. The thermal expansion coefficients and dynamic evolution characteristics of muddy siltstone,mudstone and shale at 25-600℃ were obtained by using DIL402 SE instrument on the basis of thin section observation and X-ray diffraction analysis of cores from three wells of Triassic Chang 7 shale layer in Ordos Basin. The results show that:(1)The thermal expansion coefficients of rocks with different lithologies in the study area differ greatly and increase with the increase of organic carbon content. The thermal expansion coefficients of rocks with TOC being less than 5% increase almost exponentially,while the thermal expansion coefficients of rocks with TOC being greater than or equal to 5% show a "four stage" complex change.(2)The anisotropy factor of the thermal expansion coefficients of organic-rich shale in the study area is the largest,which is 1.7-2.7 times in vertical bedding direction than that in parallel bedding direction.(3)The high hydrocarbon generation intensity of organic-rich shale can cause microfractures and lead to complex changes in thermal expansion.

Key words: in-situ conversion technology, organic-rich shale, thermal expansion coefficient, anisotropy factor, dynamic evolution, Chang 7 shale, Triassic, Ordos Basin

中图分类号: 

  • TE133+9
[1] 邹才能, 杨智, 张国生, 等.非常规油气地质学建立及实践[J]. 地质学报, 2019, 93(1):12-23. ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Establishment and practice of unconventional oil and gas geology[J]. Acta Geologica Sinica, 2019, 93(1):12-23.
[2] 杨智, 侯连华, 陶士振, 等.致密油与页岩油形成条件与"甜点区"评价[J].石油勘探与开发, 2015, 42(5):555-565. YANG Zhi, HOU Lianhua, TAO Shizhen, et al.Formation conditions and "sweet spot" evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5):555-565.
[3] 赵文智, 胡素云, 侯连华.页岩油地下原位转化的内涵与战略地位[J].石油勘探与开发, 2018, 45(4):537-545. ZHAO Wenzhi, HU Suyun, HOU Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4):537-545.
[4] 张林晔, 李钜源, 李政, 等.北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展, 2014, 29(6):700-711. ZHANG Linye, LI Juyuan, LI Zheng, et al.Advances in shale oil/gas research in North America and considerations on explora-tion for continental shale oil/gas in China[J]. Advances in Earth Science, 2014, 29(6):700-711.
[5] SIRATOVICH P A, VON AULOCK F W,LAVALLÉE Y, et al. Thermoelastic properties of the Rotokawa andesite:A geothermal reservoir constraint[J]. Journal of Volcanology and Geothermal Research, 2015, 301:1-13.
[6] 马海佳, 张海军, 张冶.基于THM的井壁稳定性分析[J].大庆石油学院学报, 2008, 32(6):50-55. MA Haijia, ZHANG Haijun, ZHANG Ye. Well bore stability based on THM[J]. Journal of Daqing Petroleum Institute, 2008, 32(6):50-55.
[7] 马天寿, 陈平.页岩地层中孔隙热弹性井眼稳定力学模型[J]. 岩石力学与工程学报, 2015, 34(增刊2):3613-3623. MA Tianshou, CHEN Ping. Porothermoelastic mechanical model of wellbore stability in shale formations[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl 2):3613- 3623.
[8] 苗社强, 李和平, 周永胜.推杆式热膨胀仪测量三种岩石高温热膨胀系数[J].吉林大学学报(地球科学版), 2015, 45(增刊1):345. MIAO Sheqiang, LI Heping, ZHOU Yongsheng. Measurement of thermal expansion coefficients of three kinds of rocks with push-rod thermal dilatometer at high temperature[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(Suppl 1):345.
[9] 刘海涛, 周辉, 胡大伟, 等.含层理砂岩热膨胀系数的试验研究[J].岩土力学, 2017, 38(10):2841-2846. LIU Haitao, ZHOU Hui, HU Dawei, et al. Experiment study of thermal expansion coefficient of sandstone with beddings[J]. Rock and Soil Mechanics, 2017, 38(10):2841-2846.
[10] 董付科, 冯子军, 杨栋.高温三轴应力下新疆吉木萨尔油页岩热变形特征研究[J].煤炭工程, 2019, 51(3):103-106. DONG Fuke, FENG Zijun, YANG Dong. Thermal deformation characteristics of Jimsar oil shale in Xinjiang under high temperature and triaxial stresses[J]. Coal Engineering, 2019, 51(3):103-106.
[11] GABOVA A, CHEKHONIN E, POPOV Y, et al. Experimental investigation of thermal expansion of organic-rich shales[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 132:104398.
[12] 郤保平, 何水鑫, 吴阳春, 等.原位应力状态下花岗岩热变形及热膨胀系数演变规律试验研究[J].岩土力学, 2020, 41(增刊2):1-11. XI Baoping, HE Shuixin, WU Yangchun, et al. Experimental study on evolution law of thermal deformation and thermal expansion coefficient of granite under in-situ stress state[J]. Rock and Soil Mechanics, 2020, 41(Suppl 2):1-11.
[13] 杨华, 刘显阳, 张才利, 等.鄂尔多斯盆地三叠系延长组低渗透岩性油藏主控因素及其分布规律[J].岩性油气藏, 2007, 19(3):1-6. YANG Hua, LIU Xianyang, ZHANG Caili, et al. The main controlling factors and distribution of low permeability lithologic reservoirs of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(3):1-6.
[14] 黄彦杰, 白玉彬, 孙兵华, 等.鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J].岩性油气藏, 2020, 32(1):66-75. HUANG Yanjie, BAI Yubin, SUN Binghua, et al. Characteristics and evaluation of Chang 7 source rock of Yanchang Formation in Fuxian area, Ordos Basin[J].Lithologic Reservoirs, 2020, 32(1):66-75.
[15] 李森, 朱如凯, 崔景伟, 等.古环境与有机质富集控制因素研究:以鄂尔多斯盆地南缘长7油层组为例[J]. 岩性油气藏, 2019, 31(1):87-95. LI Sen, ZHU Rukai, CUI Jinwei, et al. Paleoenvironment and controlling factors of organic matter enrichment:A case of Chang 7 oil reservoir in southern margin of Ordos Basin[J]. Lithologic Reservoirs, 2019, 31(1):87-95.
[16] 国吉安, 庞军刚, 王桂成, 等.鄂尔多斯盆地晚三叠世延长组湖盆演化及石油聚集规律[J]. 世界地质, 2010, 29(2):277- 283. GUO Ji'an, PANG Jungang, WANG Guicheng, et al. Lake basin evolution and petroleum accumulation of Late Triassic Yanchang Formation in Ordos Basin[J]. Global Geology, 2010, 29(2):277-283.
[17] DUAN Y, WANG C Y, ZHENG C Y, et al. Geochemical study of crude oils from the Xifeng oilfield of the Ordos Basin, China[J]. Journal of Asian Earth Sciences, 2008, 31(4/5/6):341-356.
[18] HARVEY R D.Thermal expansion of certain Illinois limestones[D]. Urbana:Illinois State Geological Survey, 1966.
[19] SOMERTON W H.Thermal properties and temperature-related behavior of rock/fluid systems[J]. Developments in Petroleum Science, 1992, 37:1-257.
[20] YARZEV V P, EROFEEV A V. Operating properties and durability of bitumen-polymer composites[M]. Tambov:FGBOU VPO, TGTU, 2004.
[21] ANDERSON D L. Theory of the earth[M]. Boston:Blackwell Scientific Publications, 1989.
[22] KAEVAND T, LILLE U. Atomistic molecular simulation of thermal volume expansion of Estonian kukersite kerogen[J]. Oil Shale, 2005, 22(3):291-303.
[23] HOU Lianhua, MA Weijiao, LUO Xia, et al.Characteristics and quantitative models for hydrocarbon generation-retentionproduction of shale under ICP conditions:Example from the Chang 7 member in the Ordos Basin[J]. Fuel, 2020, 279:118497.
[24] 于永军, 梁卫国, 毕井龙, 等.油页岩热物理特性试验与高温热破裂数值模拟研究[J].岩石力学与工程学报, 2015, 34(6):1106-1115. YU Yongjun, LIANG Weiguo, BI Jinglong, et al. Thermophysical experiment and numerical simulation on thermal cracking of oil shale at high temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6):1106-1115.
[25] 吕超, 孙强, 邓舒, 等.砂岩热物理性质的温度作用效应试验研究[J].地质与勘探, 2017, 53(4):780-787. LYU Chao, SUN Qiang, DENG Shu, et al. An experimental study on thermal physical properties of sandstone under hightemperature heating[J]. Geology and Exploration, 2017, 53(4):780-787.
[26] WEAVER C E.Thermal properties of clays and shales[R]. Oak Ridge, US:Technical Report, 1976.
[27] OJA V, YANCHILIN A, KAN T, et al. Thermo-swelling behavior of Kukersite oil shale[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(2):1163-1169.
[28] MA Weijiao, HOU Lianhua, LUO Xiao, et al. Generation and expulsion process of the Chang 7 oil shale in the Ordos Basin based on temperature-based semi-open pyrolysis:Implications for in-situ conversion process[J]. Journal of Petroleum Science and Engineering, 2020, 190:107035.
[29] ZHOU Hui, LIU Haitao, HU Dawei, et al. Anisotropies in mechanical behaviour, thermal expansion and p-wave velocity of sandstone with bedding planes[J]. Rock Mechanics and Rock Engineering, 2016, 49:4497-4504.
[30] SIEGESMUND S, ULLEMEYER K, WEISS T, et al. Physical weathering of marbles caused by anisotropic thermal expansion[J]. International Journal of Earth Sciences, 2000, 89(1):170- 182.
[31] WONG Tengfong, BRACE W F. Thermal expansion of rocks:Some measurements at high pressure[J]. Tectonophysics, 1979, 57(2/3/4):95-117.
[1] 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22.
[2] 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88.
[3] 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155.
[4] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[5] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[6] 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126.
[7] 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49.
[8] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[9] 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171.
[10] 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88.
[11] 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159.
[12] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[13] 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68.
[14] 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156.
[15] 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区中—晚二叠世构造-沉积环境与原型盆地演化[J]. 岩性油气藏, 2024, 36(1): 32-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .