岩性油气藏 ›› 2023, Vol. 35 ›› Issue (2): 113–124.doi: 10.12108/yxyqc.20230211

• 地质勘探 • 上一篇    下一篇

川东地区寒武系高台组白云岩-蒸发岩共生地层高频层序划分及地质意义

胡忠贵1,2, 王纪煊1,2, 李世临3, 郭艳波3, 左云安3, 庞宇来3   

  1. 1. 长江大学 地球科学学院, 武汉 430100;
    2. 长江大学 沉积盆地研究中心, 武汉 430100;
    3. 中国石油西南油气田公司 重庆气矿, 重庆 402160
  • 收稿日期:2022-07-05 修回日期:2022-08-04 出版日期:2023-03-01 发布日期:2023-03-07
  • 通讯作者: 王纪煊(1996-)男,长江大学在读硕士研究生,研究方向为碳酸盐岩沉积学及储层地质学。Email:1079299440@qq.com。 E-mail:1079299440@qq.com
  • 作者简介:胡忠贵(1979-),男,博士,教授,主要从事层序地层学及储层沉积学方面的教学和研究工作。地址:(430000)湖北省武汉市蔡甸区蔡甸街大学路111号。Email:hzg1978@yangtzeu.edu.cn。
  • 基金资助:
    “十三五”国家科技重大专项“重点海相层系沉积相研究”(编号:2016ZX05007002)资助。

High-frequency sequence division and geological significance of dolomiteevaporite paragenetic strata of Cambrian Gaotai Formation in eastern Sichuan Basin

HU Zhonggui1,2, WANG Jixuan1,2, LI Shilin3, GUO Yanbo3, ZUO Yun'an3, PANG Yulai3   

  1. 1. School of Geosciences, Yangtze University, Wuhan 430100, China;
    2. Sedimentary Basin Research Center, Yangtze University, Wuhan 430100, China;
    3. Chongqing Gas Mine, PetroChina Southwest Oil and Gas Field Company, Chongqing 402160, China
  • Received:2022-07-05 Revised:2022-08-04 Online:2023-03-01 Published:2023-03-07

摘要: 白云岩-蒸发岩共生地层中油气资源丰富。基于层序地层学原理,结合钻井、薄片等资料,在三级层序划分的基础上,采用INPEFA和小波变换技术对川东地区寒武系高台组白云岩-蒸发岩共生地层的高频层序进行识别与划分,并探讨了其地质意义。研究结果表明: ①川东地区寒武系高台组白云岩-蒸发岩共生地层可划分为3个三级层序,自下而上分别为Sq1,Sq2,Sq3,可进一步划分为6个四级层序(ssq1—ssq6)。高台组主要为碳酸盐岩台地沉积环境,自西向东依次发育混积台地、局限-蒸发台地、开阔台地相沉积。②研究区高台组的岩性组合序列包括白云岩上覆厚层蒸发岩(A)、厚层白云岩夹蒸发岩(B)、白云岩与蒸发岩互层(C)和蒸发岩上覆厚层白云岩(D)等4种类型。白云岩-蒸发岩共生地层发育在四级层序的接触界面,且多发育于层序内部的高位体系域,反映了海平面较强烈的扰动,尤其是海平面的相对下降有利于白云岩和蒸发岩沉积。③研究区高台组白云岩-蒸发岩共生地层的岩性组合序列在GRinpefa曲线和小波变换曲线上均具有响应特征,对应的64尺度小波系数曲线波动平缓,能量团为弱黄蓝色,GRinpefa曲线以“缺口”的形式表现出蒸发岩与白云岩的岩性差异。

关键词: 白云岩-蒸发岩共生, 最大熵谱分析, 小波变换, 高频层序划分, 高台组, 寒武系, 川东地区

Abstract: The dolomite-evaporite paragenetic strata are rich in oil and gas resources. Based on the principle of sequence stratigraphy, combined with drilling and thin section data, and on the basis of third-order sequence division, INPEFA and wavelet transform technologies were used to identify and divide the high-frequency sequences of dolomite-evaporite paragenetic strata of Cambrian Gaotai Formation in eastern Sichuan Basin. The results show that:(1) The dolomite-evaporite paragenetic strata of Cambrian Gaotai Formation in eastern Sichuan Basin can be divided into three third-order sequences which are respectively Sq1, Sq2 and Sq3 from bottom to top, and can be further divided into six fourth-order sequences(ssq1-ssq6). The Gaotai Formation is mainly in a carbonate platform sedimentary environment, with mixed tidal flats, confined-evaporative platforms and open platform facies deposits developed in turn from west to east.(2) There are four types of intergrowth rock assemblages of Cambrian Gaotai Formation in the study area, including:thick-layered evaporite overlying dolomite, thick-layered dolomite interbedded with evaporite, interbedded dolomite and evaporite, and thick-layered dolomite overlying evaporite. The dolomite-evaporite paragenetic strata are developed at the contact interface of the fourth-order sequence, and are mostly developed in the highstand systems tract inside the sequence, reflecting a strong disturbance of sea level, especially the relative decline of sea level, which is conducive to the deposition of dolomite and evaporite. (3) The rock assemblage sequence of the dolomite-evaporite paragenetic strata of Gaotai Formation can generate response characteristics on the GRinpefa and wavelet transform curves. The corresponding 64-scale wavelet coefficient curve fluctuates smoothly, and the energy clusters are weak yellow-blue. The GRinpefa curve shows lithological difference between evaporite and dolomite in the form of "notch".

Key words: dolomite-evaporite paragenesis, maximum entropy spectral analysis, wavelet transform, high-frequency sequence division, Gaotai Formation, Cambrian, eastern Sichuan Basin

中图分类号: 

  • TE121.3+4
[1] 罗晓彤, 文华国, 彭才, 等. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分[J]. 岩性油气藏, 2020, 32(3):68-81. LUO Xiaotong, WEN Huaguo, PENG Cai, et al. Sedimentary characteristics and high-precision sequence division of lacustrine carbonate rocks of BV Formation in L oilfield of Santos Basin, Brazil[J]. Lithologic Reservoirs, 2020, 32(3):68-81.
[2] 王志坤, 钟建华, 艾合买提江·阿布都热合曼, 等.基于小波振幅谱和复小波相位谱的高分辨率层序划分[J]. 石油学报, 2008, 29(6):865-869. WANG Zhikun, ZHONG Jianhua, AHMATJAN Abdurahman, et al. Division of high-resolution sequence based on wavelet amplitude spectrum and complex wavelet phase spectrum[J]. Acta Petrolei Sinica, 2008, 29(6):865-869.
[3] 刘洛夫, 徐敬领, 高鹏, 等. 综合预测误差滤波分析方法在地层划分及等时对比中的应用[J].石油与天然气地质, 2013, 34(4):564-572. LIU Luofu, XU Jingling, GAO Peng, et al. Application of comprehensive prediction error filter analysis to stratigraphic division and isochronous correlation[J]. Oil & Gas Geology, 2013, 34(4):564-572.
[4] 王梦琪, 谢俊, 王金凯, 等. 基于INPEFA技术的高分辨率层序地层研究:以埕北油田东营组二段为例[J].中国科技论文, 2016, 11(9):982-987. WANG Mengqi, XIE Jun, WANG Jinkai, et al. Research of highresolution sequence stratigraphy using INPEFA:A case study in the second member of Dongying Formation of Chengbei oilfield[J]. China Sciencepaper, 2016, 11(9):982-987.
[5] 寻知锋, 余继峰, 张霞, 等. 小波变换在高分辨率层序地层划分中的应用[J].山东国土资源, 2017, 33(9):77-81. XUN Zhifeng, YU Jifeng, ZHANG Xia, et al. Application of wavelet transform in high-resolution sequence stratigraphic division[J]. Shandong Land and Resources, 2017, 33(9):77-81.
[6] 苗辰若, 高晓伟. 基于改进的Morlet小波变换在伊犁盆地南缘层序地层划分中的应用[J]. 物探化探计算技术, 2021, 43(2):215-223. MIAO Chenruo, GAO Xiaowei. Application of improved Morlet wavelet transform in sequence stratigraphy division in southern margin in Yili Basin[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2021, 43(2):215-223.
[7] 周亚伟, 杜玉洪, 谢俊, 等. INPEFA技术与小波变换在层序地层划分中的应用与对比:以饶阳凹陷大王庄地区东营组三段为例[J].中国科技论文, 2021, 16(5):494-501. ZHOU Yawei, DU Yuhong, XIE Jun, et al. Application and comparison of INPEFA technique and wavelet transform in sequence stratigraphy division:A case study of the third section of Doying Formation in Dawangzhuang area, Raoyang Depression[J]. China Sciencepaper, 2021, 16(5):494-501.
[8] 路顺行, 张红贞, 孟恩, 等.运用INPEFA技术开展层序地层研究[J].石油地球物理勘探, 2007, 42(6):703-708. LU Shunxing, ZHANG Hongzhen, MENG En, et al. Application of INPEFA technique to carry out sequence-stratigraphic study[J]. Oil Geophysical Prospecting, 2007, 42(6):703-708.
[9] 文华国, 霍飞, 郭佩, 等. 白云岩-蒸发岩共生体系研究进展及展望[J].沉积学报, 2021, 39(6):1321-1343. WEN Huaguo, HUO Fei, GUO Pei, et al. Advances and prospects of dolostone-evaporite paragenesis system[J]. Acta Sedimentologica Sinica, 2021, 39(6):1321-1343.
[10] 胡安平, 沈安江, 杨翰轩, 等. 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合[J]. 石油勘探与开发, 2019, 46(5):916-928. HU Anping, SHEN Anjiang, YANG Hanxuan, et al. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J]. Petroleum Exploration and Development, 2019, 46(5):916-928.
[11] 熊加贝, 何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1):187-200. XIONG Jiabei, HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields[J]. Lithologic Reservoirs, 2022, 34(1):187-200.
[12] MAZUMDAR A, STRAUSS H. Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the Late Neoproterozoic-Early Cambrian Bilara Group(Nagaur-Ganganagar Basin, India):Constraints on intrabasinal correlation and global sulfur cycle[J]. Precambrian Research, 2006, 149(3/4):217-230.
[13] ALLEN P A. The Huqf Supergroup of Oman:Basin development and context for Neoproterozoic glaciation[J]. Earth-Science Reviews, 2007, 84(3/4):139-185.
[14] PRINCE J K G, RAINBIRD R H, WING B A. Evaporite deposition in the mid-Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur[J]. Geology, 2019, 47(4):375-379.
[15] 史卜庆, 王兆明, 万仑坤, 等. 2020年全球油气勘探形势及2021年展望[J]. 国际石油经济, 2021, 29(3):39-44. SHI Buqing, WANG Zhaoming, WAN Lunkun, et al. The global oil and gas exploration situation in 2020 and the outlook for 2021[J]. International Petroleum Economics, 2021, 29(3):39-44.
[16] 孙旭东, 郑求根, 郭兴伟, 等. 巴西桑托斯盆地构造演化与油气勘探前景[J]. 海洋地质前沿, 2021, 37(2):37-45. SUN Xudong, ZHENG Qiugen, GUO Xingwei, et al. Tectonic evolution of Santos Basin, Brazil and its bearing on oil-gas exploration[J]. Marine Geology Frontiers, 2021, 37(2):37-45.
[17] 徐安娜, 胡素云, 汪泽成, 等. 四川盆地寒武系碳酸盐岩-膏盐岩共生体系沉积模式及储层分布[J].天然气工业, 2016, 36(6):11-20.XU Anna, HU Suyun, WANG Zecheng, et al. Sedimentary mode and reservoir distribution of the Cambrian carbonate & evaporite paragenesis system in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(6):11-20.
[18] 张满郎, 谢增业, 李熙喆, 等.四川盆地寒武纪岩相古地理特征[J].沉积学报, 2010, 28(1):128-139. ZHANG Manlang, XIE Zengye, LI Xizhe, et al. Characteristics of lithofacies paleogeography of Cambrian in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2010, 28(1):128-139.
[19] 冯增昭, 彭勇民, 金振奎, 等.中国南方寒武纪岩相古地理[J]. 古地理学报, 2001, 3(1):1-14. FENG Zengzhao, PENG Yongmin, JIN Zhenkui, et al. Lithofacies palaeogeography of the Cambrian in south China[J]. Journal of Palaeogeography, 2001, 3(1):1-14.
[20] 冯增昭, 彭勇民, 金振奎, 等.中国中寒武世岩相古地理[J].古地理学报, 2002, 4(2):1-11. FENG Zengzhao, PENG Yongmin, JIN Zhenkui, et al. Lithofacies palaeogeography of the Middle Cambrian in China[J]. Journal of Palaeogeography, 2002, 4(2):1-11.
[21] 李皎, 何登发.四川盆地及邻区寒武纪古地理与构造-沉积环境演化[J].古地理学报, 2014, 16(4):441-460. LI Jiao, HE Dengfa. Palaeogeography and tectonic-depositional environment evolution of the Cambrian in Sichuan Basin and adjacent areas[J]. Journal of Palaeogeography(Chinese Edition), 2014, 16(4):441-460.
[22] 顾志翔, 何幼斌, 彭勇民, 等. 四川盆地下寒武统膏盐岩"多潟湖" 沉积模式[J].沉积学报, 2019, 37(4):834-846. GU Zhixiang, HE Youbin, PENG Yongmin, et al. "Multiple-lagoon" sedimentary model of the Lower Cambrian gypsum salt rocks in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(4):834-846.
[23] 杨威, 谢武仁, 魏国齐, 等. 四川盆地寒武纪-奥陶纪层序岩相古地理、有利储层展布与勘探区带[J].石油学报, 2012, 33(增刊2):21-34. YANG Wei, XIE Wuren, WEI Guoqi, et al. Sequence lithofacies paleogeography, favorable reservoir distribution and exploration zones of the Cambrian and Ordovician in Sichuan Basin, China[J]. Acta Petrolei Sinica, 2012, 33(Suppl 2):21-34.
[24] 李峰峰, 郭睿, 余义常.层序地层划分方法及进展[J].地质科技情报, 2019, 38(4):215-224. LI Fengfeng, GUO Rui, YU Yichang. Progress and prospect of the division of sequence stratigraphy[J]. Geological Science and Technology Information, 2019, 38(4):215-224.
[25] 李霞, 范宜仁, 杨立伟, 等.测井曲线小波变换特性在层序地层划分中的应用[J].大庆石油地质与开发, 2006, 25(4):112-115. LI Xia, FAN Yiren, YANG Liwei, et al. Application of wavelet inversion characteristics of logging curve in the classification of sequence stratigraphy[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(4):112-115.
[26] 房文静, 范宜仁, 邓少贵, 等. 测井多尺度分析方法用于准层序自动划分研究[J].地球物理学进展, 2007, 22(6):1809-1814. FANG Wenjing, FAN Yiren, DENG Shaogui, et al. Application of multi-scale analysis to the demarcation of parasequence automatically in well logging[J]. Progress in Geophysics, 2007, 22(6):1809-1814.
[27] 李霞. 测井多尺度分析方法在层序地层分析中的应用研究[D].青岛:中国石油大学(华东), 2007. LI Xia. Research on the application ofmultiscale analysis method of well logging to sequence stratigraphy[D]. Qingdao:China University of Petroleum(East China), 2007.
[28] GROSSMANN A, KRONLAND-MARTINTE R, MORLET J. Reading and understanding continuous wavelet transforms[J]. Wavelets, 1989:2-20.
[29] MORLET J, ARENS G, FOURGEAU E, et al. Wave propagation and sampling theory-Part Ⅱ:Sampling theory and complex waves[J]. Geophysics, 1982, 47(2):222-236.
[30] MORLET J, ARENS G, FOURGEAU E, et al. Wave propagation and sampling theory-Part Ⅰ:Complex signal and scattering in multilayered media[J]. Geophysics, 1982, 47(2):203-221.
[31] 任金锋, 廖远涛, 孙鸣, 等. 基于小波变换的高精度层序地层定量划分研究及其应用[J]. 地球物理学进展, 2013, 28(5):2651-2658. REN Jinfeng, LIAO Yuantao, SUN Ming, et al. A method for quantitative division of sequence stratigraphy with high-resolution based on wavelet transform and its application[J]. Progress in Geophysics, 2013, 28(5):2651-2658.
[32] 王志坤, 王多云, 宋广寿, 等. 测井信号小波分析在高分辨率层序地层划分中的应用[J]. 大庆石油学院学报, 2005, 29(6):17-20. WANG Zhikun, WANG Duoyun, SONG Guangsou, et al. Application of wavelet analysis to sequence stratigraphic division of high resolution sequence stratigraphy[J]. Journal of Daqing Petroleum Institute, 2005, 29(6):17-20.
[33] 高达, 林畅松, 胡明毅, 等. 利用自然伽马能谱测井识别碳酸盐岩高频层序:以塔里木盆地塔中地区T1井良里塔格组为例[J].沉积学报, 2016, 34(4):707-715. GAO Da, LIN Changsong, HU Mingyi, et al. Using spectral gamma ray log to recognize high-frequency sequences in carbonate strata:A case study from the Lianglitage Formation from well T1 in Tazhong area, Tarim Basin[J]. Acta Sedimentologica Sinica, 2016, 34(4):707-715.
[34] 杨文杰, 胡明毅, 邓庆杰, 等.小型断陷湖盆初始裂陷期沉积充填演化特征:以松辽盆地梨树断陷苏家屯地区火二段为例[J].大庆石油地质与开发, 2019, 38(6):12-21. YANG Wenjie, HU Mingyi, DENG Qingjie, et al. Characteristics of the sedimentary filling and evolution in the initial chasmic stage of the small rift lake basin:A case of Huo member-2 in Sujiatun area of Lishu Fault Depression of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(6):12-21.
[35] 文华国, 梁金同, 周刚, 等. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带[J]. 岩性油气藏, 2022, 34(2):1-16. WEN Huaguo, LIANG Jintong, ZHOU Gang, et al. Sequencebased lithofacies paleogeography and favorable natural gas exploration areas of Cambrian Xixiangchi Formation in Sichuan Basin and its periphery[J]. Lithologic Reservoirs, 2022, 34(2):1-16.
[36] 韩波, 何治亮, 任娜娜, 等. 四川盆地东缘龙王庙组碳酸盐岩储层特征及主控因素[J].岩性油气藏, 2018, 30(1):75-85. HAN Bo, HE Zhiliang, REN Nana, et al. Characteristics and main controlling factors of carbonate reservoirs of Longwangmiao Formation in eastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1):75-85.
[37] 胡忠贵, 吴松, 郭艳波, 等. 川东地区下寒武统龙王庙组储层特征及主控因素研究[J].长江大学学报(自然科学版), 2020, 17(5):1-9. HU Zhonggui, WU Song, GUO Yanbo, et al. The sudy on reservoir characteristics and main controlling factors of Lower Cambrian Longwangmiao Formation in eastern Sichuan Basin[J]. Joural of Yangtze University(Natural Science Edition), 2020, 17(5):1-9.
[1] 文华国, 罗冰, 钟克修, 冯青平, 刘磊, 廖义沙, 彭才, 蔡家兰, 徐文礼, 朱宜新, 郝静, 罗鑫, 徐姁. 川东地区三叠系嘉陵江组邻水-丰都台凹的发现及油气勘探意义[J]. 岩性油气藏, 2023, 35(1): 12-24.
[2] 谢瑞, 张尚锋, 周林, 刘皓天, 姚明君, 蒋雪桂. 川东地区侏罗系自流井组大安寨段致密储层油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 108-119.
[3] 王亮, 苏树特, 马梓柯, 蒲静, 姚蔺芳, 刘宇, 罗洋. 川中地区寒武系沧浪铺组沉积特征[J]. 岩性油气藏, 2022, 34(6): 19-31.
[4] 刘永立, 李国蓉, 何钊, 田家奇, 李肖肖. 塔北地区寒武系层序地层格架与台缘带展布特征[J]. 岩性油气藏, 2022, 34(6): 80-91.
[5] 李珊珊, 姜鹏飞, 刘磊, 雷程, 曾云贤, 陈仕臻, 周刚. 四川盆地高磨地区寒武系沧浪铺组碳酸盐岩颗粒滩地震响应特征及展布规律[J]. 岩性油气藏, 2022, 34(4): 22-31.
[6] 李璐萍, 梁金同, 刘四兵, 郭艳波, 李堃宇, 和源, 金九翔. 川中地区寒武系洗象池组白云岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2022, 34(3): 39-48.
[7] 文华国, 梁金同, 周刚, 邱玉超, 刘四兵, 李堃宇, 和源, 陈浩如. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带[J]. 岩性油气藏, 2022, 34(2): 1-16.
[8] 卿繁, 闫建平, 王军, 耿斌, 王敏, 赵振宇, 晁静. 砂砾岩体沉积期次划分及其与物性的关系——以东营凹陷北部陡坡带Y920区块沙四上亚段为例[J]. 岩性油气藏, 2020, 32(6): 50-61.
[9] 朱逸青,王兴志,冯明友,李 可. 川东地区下古生界五峰组—龙马溪组页岩岩相划分及其与储层关系[J]. 岩性油气藏, 2016, 28(5): 59-66.
[10] 刘诗宇,胡明毅,胡忠贵,戴危艳. 四川盆地东部石炭系黄龙组白云岩成因[J]. 岩性油气藏, 2015, 27(4): 40-46.
[11] 张猛刚,洪忠,窦玉坛,崔晓杰. 时频分析在苏里格地区含气性检测中的应用[J]. 岩性油气藏, 2013, 25(5): 76-80.
[12] 周刚,郑荣才,罗韧,刘划一,文华国. 环开江—梁平海槽长兴组生物礁类型及储层特征[J]. 岩性油气藏, 2013, 25(1): 81-87.
[13] 郑博,郑荣才,周刚,文华国. 川东五百梯长兴组台缘生物礁储层沉积学特征[J]. 岩性油气藏, 2011, 23(3): 60-69.
[14] 冯磊. 利用地震资料时频特征分析沉积旋回[J]. 岩性油气藏, 2011, 23(2): 95-99.
[15] 刘雁婷,傅 恒,陈 骥,房晓璐,黄 诚,贾 微. 塔里木盆地巴楚一塔中地区寒武系层序地层特征[J]. 岩性油气藏, 2010, 22(2): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[2] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[3] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[4] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[5] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[6] 刘全新, 高建虎, 董雪华. 储层预测中的非线性反演方法[J]. 岩性油气藏, 2007, 19(1): 81 -85 .
[7] 张昌民, 尹太举, 李少华, 熊福均. 基准面旋回对河道砂体几何形态的控制作用———以枣园油田孔一段枣Ⅱ—Ⅲ油组为例[J]. 岩性油气藏, 2007, 19(4): 9 -12 .
[8] 赵贤正, 金凤鸣, 刘震, 张以明, 王权, 韩春元. 二连盆地地层岩性油藏“ 多元控砂—四元成藏—主元富集”与勘探实践(Ⅰ)——“ 多元控砂” 机理[J]. 岩性油气藏, 2007, 19(2): 9 -15 .
[9] 郑雷清. 综合识别方法在低阻油气层勘探中的应用[J]. 岩性油气藏, 2007, 19(2): 71 -75 .
[10] 于常青, 杨午阳, 杨文采. 关于油气地震勘探的基础研究问题[J]. 岩性油气藏, 2007, 19(2): 117 -120 .