岩性油气藏 ›› 2023, Vol. 35 ›› Issue (2): 113124.doi: 10.12108/yxyqc.20230211
胡忠贵1,2, 王纪煊1,2, 李世临3, 郭艳波3, 左云安3, 庞宇来3
HU Zhonggui1,2, WANG Jixuan1,2, LI Shilin3, GUO Yanbo3, ZUO Yun'an3, PANG Yulai3
摘要: 白云岩-蒸发岩共生地层中油气资源丰富。基于层序地层学原理,结合钻井、薄片等资料,在三级层序划分的基础上,采用INPEFA和小波变换技术对川东地区寒武系高台组白云岩-蒸发岩共生地层的高频层序进行识别与划分,并探讨了其地质意义。研究结果表明: ①川东地区寒武系高台组白云岩-蒸发岩共生地层可划分为3个三级层序,自下而上分别为Sq1,Sq2,Sq3,可进一步划分为6个四级层序(ssq1—ssq6)。高台组主要为碳酸盐岩台地沉积环境,自西向东依次发育混积台地、局限-蒸发台地、开阔台地相沉积。②研究区高台组的岩性组合序列包括白云岩上覆厚层蒸发岩(A)、厚层白云岩夹蒸发岩(B)、白云岩与蒸发岩互层(C)和蒸发岩上覆厚层白云岩(D)等4种类型。白云岩-蒸发岩共生地层发育在四级层序的接触界面,且多发育于层序内部的高位体系域,反映了海平面较强烈的扰动,尤其是海平面的相对下降有利于白云岩和蒸发岩沉积。③研究区高台组白云岩-蒸发岩共生地层的岩性组合序列在GRinpefa曲线和小波变换曲线上均具有响应特征,对应的64尺度小波系数曲线波动平缓,能量团为弱黄蓝色,GRinpefa曲线以“缺口”的形式表现出蒸发岩与白云岩的岩性差异。
中图分类号:
[1] 罗晓彤, 文华国, 彭才, 等. 巴西桑托斯盆地L油田BV组湖相碳酸盐岩沉积特征及高精度层序划分[J]. 岩性油气藏, 2020, 32(3):68-81. LUO Xiaotong, WEN Huaguo, PENG Cai, et al. Sedimentary characteristics and high-precision sequence division of lacustrine carbonate rocks of BV Formation in L oilfield of Santos Basin, Brazil[J]. Lithologic Reservoirs, 2020, 32(3):68-81. [2] 王志坤, 钟建华, 艾合买提江·阿布都热合曼, 等.基于小波振幅谱和复小波相位谱的高分辨率层序划分[J]. 石油学报, 2008, 29(6):865-869. WANG Zhikun, ZHONG Jianhua, AHMATJAN Abdurahman, et al. Division of high-resolution sequence based on wavelet amplitude spectrum and complex wavelet phase spectrum[J]. Acta Petrolei Sinica, 2008, 29(6):865-869. [3] 刘洛夫, 徐敬领, 高鹏, 等. 综合预测误差滤波分析方法在地层划分及等时对比中的应用[J].石油与天然气地质, 2013, 34(4):564-572. LIU Luofu, XU Jingling, GAO Peng, et al. Application of comprehensive prediction error filter analysis to stratigraphic division and isochronous correlation[J]. Oil & Gas Geology, 2013, 34(4):564-572. [4] 王梦琪, 谢俊, 王金凯, 等. 基于INPEFA技术的高分辨率层序地层研究:以埕北油田东营组二段为例[J].中国科技论文, 2016, 11(9):982-987. WANG Mengqi, XIE Jun, WANG Jinkai, et al. Research of highresolution sequence stratigraphy using INPEFA:A case study in the second member of Dongying Formation of Chengbei oilfield[J]. China Sciencepaper, 2016, 11(9):982-987. [5] 寻知锋, 余继峰, 张霞, 等. 小波变换在高分辨率层序地层划分中的应用[J].山东国土资源, 2017, 33(9):77-81. XUN Zhifeng, YU Jifeng, ZHANG Xia, et al. Application of wavelet transform in high-resolution sequence stratigraphic division[J]. Shandong Land and Resources, 2017, 33(9):77-81. [6] 苗辰若, 高晓伟. 基于改进的Morlet小波变换在伊犁盆地南缘层序地层划分中的应用[J]. 物探化探计算技术, 2021, 43(2):215-223. MIAO Chenruo, GAO Xiaowei. Application of improved Morlet wavelet transform in sequence stratigraphy division in southern margin in Yili Basin[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2021, 43(2):215-223. [7] 周亚伟, 杜玉洪, 谢俊, 等. INPEFA技术与小波变换在层序地层划分中的应用与对比:以饶阳凹陷大王庄地区东营组三段为例[J].中国科技论文, 2021, 16(5):494-501. ZHOU Yawei, DU Yuhong, XIE Jun, et al. Application and comparison of INPEFA technique and wavelet transform in sequence stratigraphy division:A case study of the third section of Doying Formation in Dawangzhuang area, Raoyang Depression[J]. China Sciencepaper, 2021, 16(5):494-501. [8] 路顺行, 张红贞, 孟恩, 等.运用INPEFA技术开展层序地层研究[J].石油地球物理勘探, 2007, 42(6):703-708. LU Shunxing, ZHANG Hongzhen, MENG En, et al. Application of INPEFA technique to carry out sequence-stratigraphic study[J]. Oil Geophysical Prospecting, 2007, 42(6):703-708. [9] 文华国, 霍飞, 郭佩, 等. 白云岩-蒸发岩共生体系研究进展及展望[J].沉积学报, 2021, 39(6):1321-1343. WEN Huaguo, HUO Fei, GUO Pei, et al. Advances and prospects of dolostone-evaporite paragenesis system[J]. Acta Sedimentologica Sinica, 2021, 39(6):1321-1343. [10] 胡安平, 沈安江, 杨翰轩, 等. 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合[J]. 石油勘探与开发, 2019, 46(5):916-928. HU Anping, SHEN Anjiang, YANG Hanxuan, et al. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system[J]. Petroleum Exploration and Development, 2019, 46(5):916-928. [11] 熊加贝, 何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J]. 岩性油气藏, 2022, 34(1):187-200. XIONG Jiabei, HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields[J]. Lithologic Reservoirs, 2022, 34(1):187-200. [12] MAZUMDAR A, STRAUSS H. Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the Late Neoproterozoic-Early Cambrian Bilara Group(Nagaur-Ganganagar Basin, India):Constraints on intrabasinal correlation and global sulfur cycle[J]. Precambrian Research, 2006, 149(3/4):217-230. [13] ALLEN P A. The Huqf Supergroup of Oman:Basin development and context for Neoproterozoic glaciation[J]. Earth-Science Reviews, 2007, 84(3/4):139-185. [14] PRINCE J K G, RAINBIRD R H, WING B A. Evaporite deposition in the mid-Neoproterozoic as a driver for changes in seawater chemistry and the biogeochemical cycle of sulfur[J]. Geology, 2019, 47(4):375-379. [15] 史卜庆, 王兆明, 万仑坤, 等. 2020年全球油气勘探形势及2021年展望[J]. 国际石油经济, 2021, 29(3):39-44. SHI Buqing, WANG Zhaoming, WAN Lunkun, et al. The global oil and gas exploration situation in 2020 and the outlook for 2021[J]. International Petroleum Economics, 2021, 29(3):39-44. [16] 孙旭东, 郑求根, 郭兴伟, 等. 巴西桑托斯盆地构造演化与油气勘探前景[J]. 海洋地质前沿, 2021, 37(2):37-45. SUN Xudong, ZHENG Qiugen, GUO Xingwei, et al. Tectonic evolution of Santos Basin, Brazil and its bearing on oil-gas exploration[J]. Marine Geology Frontiers, 2021, 37(2):37-45. [17] 徐安娜, 胡素云, 汪泽成, 等. 四川盆地寒武系碳酸盐岩-膏盐岩共生体系沉积模式及储层分布[J].天然气工业, 2016, 36(6):11-20.XU Anna, HU Suyun, WANG Zecheng, et al. Sedimentary mode and reservoir distribution of the Cambrian carbonate & evaporite paragenesis system in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(6):11-20. [18] 张满郎, 谢增业, 李熙喆, 等.四川盆地寒武纪岩相古地理特征[J].沉积学报, 2010, 28(1):128-139. ZHANG Manlang, XIE Zengye, LI Xizhe, et al. Characteristics of lithofacies paleogeography of Cambrian in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2010, 28(1):128-139. [19] 冯增昭, 彭勇民, 金振奎, 等.中国南方寒武纪岩相古地理[J]. 古地理学报, 2001, 3(1):1-14. FENG Zengzhao, PENG Yongmin, JIN Zhenkui, et al. Lithofacies palaeogeography of the Cambrian in south China[J]. Journal of Palaeogeography, 2001, 3(1):1-14. [20] 冯增昭, 彭勇民, 金振奎, 等.中国中寒武世岩相古地理[J].古地理学报, 2002, 4(2):1-11. FENG Zengzhao, PENG Yongmin, JIN Zhenkui, et al. Lithofacies palaeogeography of the Middle Cambrian in China[J]. Journal of Palaeogeography, 2002, 4(2):1-11. [21] 李皎, 何登发.四川盆地及邻区寒武纪古地理与构造-沉积环境演化[J].古地理学报, 2014, 16(4):441-460. LI Jiao, HE Dengfa. Palaeogeography and tectonic-depositional environment evolution of the Cambrian in Sichuan Basin and adjacent areas[J]. Journal of Palaeogeography(Chinese Edition), 2014, 16(4):441-460. [22] 顾志翔, 何幼斌, 彭勇民, 等. 四川盆地下寒武统膏盐岩"多潟湖" 沉积模式[J].沉积学报, 2019, 37(4):834-846. GU Zhixiang, HE Youbin, PENG Yongmin, et al. "Multiple-lagoon" sedimentary model of the Lower Cambrian gypsum salt rocks in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(4):834-846. [23] 杨威, 谢武仁, 魏国齐, 等. 四川盆地寒武纪-奥陶纪层序岩相古地理、有利储层展布与勘探区带[J].石油学报, 2012, 33(增刊2):21-34. YANG Wei, XIE Wuren, WEI Guoqi, et al. Sequence lithofacies paleogeography, favorable reservoir distribution and exploration zones of the Cambrian and Ordovician in Sichuan Basin, China[J]. Acta Petrolei Sinica, 2012, 33(Suppl 2):21-34. [24] 李峰峰, 郭睿, 余义常.层序地层划分方法及进展[J].地质科技情报, 2019, 38(4):215-224. LI Fengfeng, GUO Rui, YU Yichang. Progress and prospect of the division of sequence stratigraphy[J]. Geological Science and Technology Information, 2019, 38(4):215-224. [25] 李霞, 范宜仁, 杨立伟, 等.测井曲线小波变换特性在层序地层划分中的应用[J].大庆石油地质与开发, 2006, 25(4):112-115. LI Xia, FAN Yiren, YANG Liwei, et al. Application of wavelet inversion characteristics of logging curve in the classification of sequence stratigraphy[J]. Petroleum Geology & Oilfield Development in Daqing, 2006, 25(4):112-115. [26] 房文静, 范宜仁, 邓少贵, 等. 测井多尺度分析方法用于准层序自动划分研究[J].地球物理学进展, 2007, 22(6):1809-1814. FANG Wenjing, FAN Yiren, DENG Shaogui, et al. Application of multi-scale analysis to the demarcation of parasequence automatically in well logging[J]. Progress in Geophysics, 2007, 22(6):1809-1814. [27] 李霞. 测井多尺度分析方法在层序地层分析中的应用研究[D].青岛:中国石油大学(华东), 2007. LI Xia. Research on the application ofmultiscale analysis method of well logging to sequence stratigraphy[D]. Qingdao:China University of Petroleum(East China), 2007. [28] GROSSMANN A, KRONLAND-MARTINTE R, MORLET J. Reading and understanding continuous wavelet transforms[J]. Wavelets, 1989:2-20. [29] MORLET J, ARENS G, FOURGEAU E, et al. Wave propagation and sampling theory-Part Ⅱ:Sampling theory and complex waves[J]. Geophysics, 1982, 47(2):222-236. [30] MORLET J, ARENS G, FOURGEAU E, et al. Wave propagation and sampling theory-Part Ⅰ:Complex signal and scattering in multilayered media[J]. Geophysics, 1982, 47(2):203-221. [31] 任金锋, 廖远涛, 孙鸣, 等. 基于小波变换的高精度层序地层定量划分研究及其应用[J]. 地球物理学进展, 2013, 28(5):2651-2658. REN Jinfeng, LIAO Yuantao, SUN Ming, et al. A method for quantitative division of sequence stratigraphy with high-resolution based on wavelet transform and its application[J]. Progress in Geophysics, 2013, 28(5):2651-2658. [32] 王志坤, 王多云, 宋广寿, 等. 测井信号小波分析在高分辨率层序地层划分中的应用[J]. 大庆石油学院学报, 2005, 29(6):17-20. WANG Zhikun, WANG Duoyun, SONG Guangsou, et al. Application of wavelet analysis to sequence stratigraphic division of high resolution sequence stratigraphy[J]. Journal of Daqing Petroleum Institute, 2005, 29(6):17-20. [33] 高达, 林畅松, 胡明毅, 等. 利用自然伽马能谱测井识别碳酸盐岩高频层序:以塔里木盆地塔中地区T1井良里塔格组为例[J].沉积学报, 2016, 34(4):707-715. GAO Da, LIN Changsong, HU Mingyi, et al. Using spectral gamma ray log to recognize high-frequency sequences in carbonate strata:A case study from the Lianglitage Formation from well T1 in Tazhong area, Tarim Basin[J]. Acta Sedimentologica Sinica, 2016, 34(4):707-715. [34] 杨文杰, 胡明毅, 邓庆杰, 等.小型断陷湖盆初始裂陷期沉积充填演化特征:以松辽盆地梨树断陷苏家屯地区火二段为例[J].大庆石油地质与开发, 2019, 38(6):12-21. YANG Wenjie, HU Mingyi, DENG Qingjie, et al. Characteristics of the sedimentary filling and evolution in the initial chasmic stage of the small rift lake basin:A case of Huo member-2 in Sujiatun area of Lishu Fault Depression of Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(6):12-21. [35] 文华国, 梁金同, 周刚, 等. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带[J]. 岩性油气藏, 2022, 34(2):1-16. WEN Huaguo, LIANG Jintong, ZHOU Gang, et al. Sequencebased lithofacies paleogeography and favorable natural gas exploration areas of Cambrian Xixiangchi Formation in Sichuan Basin and its periphery[J]. Lithologic Reservoirs, 2022, 34(2):1-16. [36] 韩波, 何治亮, 任娜娜, 等. 四川盆地东缘龙王庙组碳酸盐岩储层特征及主控因素[J].岩性油气藏, 2018, 30(1):75-85. HAN Bo, HE Zhiliang, REN Nana, et al. Characteristics and main controlling factors of carbonate reservoirs of Longwangmiao Formation in eastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1):75-85. [37] 胡忠贵, 吴松, 郭艳波, 等. 川东地区下寒武统龙王庙组储层特征及主控因素研究[J].长江大学学报(自然科学版), 2020, 17(5):1-9. HU Zhonggui, WU Song, GUO Yanbo, et al. The sudy on reservoir characteristics and main controlling factors of Lower Cambrian Longwangmiao Formation in eastern Sichuan Basin[J]. Joural of Yangtze University(Natural Science Edition), 2020, 17(5):1-9. |
[1] | 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34. |
[2] | 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132. |
[3] | 邹连松, 徐文礼, 梁西文, 刘皓天, 周坤, 霍飞, 周林, 文华国. 川东地区下侏罗统自流井组东岳庙段泥页岩沉积特征及物质来源[J]. 岩性油气藏, 2024, 36(4): 122-135. |
[4] | 卢科良, 吴康军, 李志军, 孙永河, 徐少华, 梁锋, 刘露, 李爽. 川中古隆起北斜坡寒武系龙王庙组油气成藏特征及演化模式[J]. 岩性油气藏, 2024, 36(4): 159-168. |
[5] | 窦立荣, 刘化清, 李博, 齐雯, 孙东, 尹路, 韩双彪. 全球天然氢气勘探开发利用进展及中国的勘探前景[J]. 岩性油气藏, 2024, 36(2): 1-14. |
[6] | 包汉勇, 刘皓天, 陈绵琨, 盛贤才, 秦军, 陈洁, 陈凡卓. 川东地区高陡构造带寒武系洗象池群天然气成藏条件[J]. 岩性油气藏, 2024, 36(2): 43-51. |
[7] | 温思宇, 张兵, 姚永君, 马恺, 王艳, 杨凯. 川东地区二叠系吴家坪组页岩中黄铁矿形态及其对大洋缺氧事件的指示意义[J]. 岩性油气藏, 2023, 35(5): 71-80. |
[8] | 文华国, 罗冰, 钟克修, 冯青平, 刘磊, 廖义沙, 彭才, 蔡家兰, 徐文礼, 朱宜新, 郝静, 罗鑫, 徐姁. 川东地区三叠系嘉陵江组邻水-丰都台凹的发现及油气勘探意义[J]. 岩性油气藏, 2023, 35(1): 12-24. |
[9] | 谢瑞, 张尚锋, 周林, 刘皓天, 姚明君, 蒋雪桂. 川东地区侏罗系自流井组大安寨段致密储层油气成藏特征[J]. 岩性油气藏, 2023, 35(1): 108-119. |
[10] | 王亮, 苏树特, 马梓柯, 蒲静, 姚蔺芳, 刘宇, 罗洋. 川中地区寒武系沧浪铺组沉积特征[J]. 岩性油气藏, 2022, 34(6): 19-31. |
[11] | 刘永立, 李国蓉, 何钊, 田家奇, 李肖肖. 塔北地区寒武系层序地层格架与台缘带展布特征[J]. 岩性油气藏, 2022, 34(6): 80-91. |
[12] | 李珊珊, 姜鹏飞, 刘磊, 雷程, 曾云贤, 陈仕臻, 周刚. 四川盆地高磨地区寒武系沧浪铺组碳酸盐岩颗粒滩地震响应特征及展布规律[J]. 岩性油气藏, 2022, 34(4): 22-31. |
[13] | 李璐萍, 梁金同, 刘四兵, 郭艳波, 李堃宇, 和源, 金九翔. 川中地区寒武系洗象池组白云岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2022, 34(3): 39-48. |
[14] | 文华国, 梁金同, 周刚, 邱玉超, 刘四兵, 李堃宇, 和源, 陈浩如. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带[J]. 岩性油气藏, 2022, 34(2): 1-16. |
[15] | 卿繁, 闫建平, 王军, 耿斌, 王敏, 赵振宇, 晁静. 砂砾岩体沉积期次划分及其与物性的关系——以东营凹陷北部陡坡带Y920区块沙四上亚段为例[J]. 岩性油气藏, 2020, 32(6): 50-61. |
|