岩性油气藏 ›› 2023, Vol. 35 ›› Issue (5): 7180.doi: 10.12108/yxyqc.20230507
温思宇1,2, 张兵1,2,3, 姚永君4, 马恺1,2, 王艳3, 杨凯3
WEN Siyu1,2, ZHANG Bing1,2,3, YAO Yongjun4, MA Kai1,2, WANG Yan3, YANG Kai3
摘要: 通过川东地区二叠系吴家坪组页岩样品镜下薄片鉴定、X射线衍射分析、主微量元素测试等,对川东地区二叠系吴家坪组页岩中黄铁矿特征及缺氧事件进行了研究。研究结果表明: ①川东地区吴家坪组页岩中矿物成分较为复杂,富含黏土矿物,黄铁矿发育,岩相主要划分为钙质硅质混合页岩、硅质页岩、黏土质页岩; ②氧化-还原环境敏感参数U/Th,Ni/Co及V/Cr值指示研究区吴家坪组页岩的沉积环境整体为贫氧环境,并且在纵向上自下而上呈现由氧化环境向缺氧环境过渡的特征; ③研究区页岩中草莓状黄铁矿的粒径为5.18~10.75 μm,且在纵向上自下而上呈现逐渐变小的特征,这种粒径上的变化特征可视为其对二叠纪晚期大洋缺氧事件的响应; ④由峨眉山玄武岩喷发所导致的缺氧事件涉及茅口组沉积晚期—吴家坪组沉积期—大隆/长兴组沉积期,自峨眉山玄武岩喷发开始,CO2不断溶于水体,浮游生物大量增长,水中含氧量持续下降,至大隆/长兴组沉积时期川东地区水体已完全处于缺氧甚至硫化环境。
中图分类号:
[1] 毛琼,邹光富,张洪茂,等.四川盆地动力学演化与油气前景探讨[J].天然气工业, 2006, 26(11):7-10. MAO Qiong, ZOU Guangfu, ZHANG Hongmao, et al. Discussion on geodynamic evolution and oil/gas prospect of the Sichuan Basin[J]. Natural Gas Industry, 2006, 26(11):7-10. [2] METCALFE I. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 2013, 66:1-33. [3] 周文,徐浩,余谦,等.四川盆地及其周缘五峰组—龙马溪组与筇竹寺组页岩含气性差异及成因[J].岩性油气藏, 2016, 28(5):18-25. ZHOU Wen, XU Hao, YU Qian, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016, 28(5):18-25. [4] 沈树忠,张华,张以春,等.中国二叠纪综合地层和时间框架[J].中国科学:地球科学, 2019, 49(1):160-193. SHEN Shuzhong, ZHANG Hua, ZHANG Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Scientia Sinica Terrae, 2019, 49(1):160-193. [5] NEWBY S M, OWENS J D, SCHOEPFER S D, et al. Transient ocean oxygenation at end-Permian mass extinction onset shown by thallium isotopes[J]. Nature Geoscience, 2021, 14(9):678-683. [6] 彭毅峰.川东地区二叠纪瓜德鲁普世-乐平世界线事件的碳酸盐岩微相与有孔虫形态群研究[D].西安:西北大学, 2021. PENG Yifeng. Carbonate microfacies and foraminiferal morphogroup study on Guadalupian-Lopinggian boundary in eastern Sichuan[D]. Xi'an:Northwest University, 2021. [7] SAWLOWICZ Z. Pyrite framboids and their development:A new conceptual mechanism[J]. Geologische Rundschau, 1993, 82(1):148-156. [8] 徐祖新,韩淑敏,王启超.中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义[J].岩性油气藏, 2015, 27(2):31-37. XU Zuxin, HAN Shumin, WANG Qichao. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in middle Yangtze area[J]. Lithologic Reservoirs, 2015, 27(2):31-37. [9] WEI Hengye, WEI Xuemei, QIU Zhen, et al. Redox conditions across the G-L boundary in South China:Evidence from pyrite morphology and sulfur isotopic compositions[J]. Chemical Geology, 2016, 440:1-14. [10] WILKIN R T, BARNES, H L, BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments:An indicator of redox-conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912. [11] 刘大锰,杨起,周春光,等.华北晚古生代煤中黄铁矿赋存特征与地质成因研究[J].地球化学, 1999, 28(4):340-350. LIU Dameng, YANG Qi, ZHOU Chunguang, et al. Occurrence and geological genesis of pyrite Late Paleozoic coals in north China[J]. Geochimica, 1999, 28(4):340-350. [12] 熊连桥,于福生,姚根顺,等.砂砾岩储层中黄铁矿的油气地质意义:以准噶尔盆地60井区齐古组为例[J].岩性油气藏, 2017, 29(4):73-80. XIONG Lianqiao, YU Fusheng, YAO Genshun, et al. Petroleum geological significance of pyrite in glutenite reservoirs:A case of Qigu Formation in Che 60 well field, Junggar Basin[J]. Lithologic Reservoirs, 2017, 29(4):73-80. [13] SWEENEY R E, KAPLAN I R. Pyrite framboid formation, laboratory synthesis and marine sediments[J]. Economic Geology, 1973, 68(5):618-634. [14] WILKIN R T, ARTHUR M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea:Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9):1399-1416. [15] WILKIN R T, ARTHUR M A, DEAN W E. History of watercolumn anoxia in the Black Sea indicated by pyrite framboid size distributions[J]. Earth and Planetary Science Letters, 1997, 148(3/4):517-525. [16] 马锋,张光亚,刘祚冬,等.特提斯构造域东段叠合盆地演化和油气成藏规律特征初论[J].地质论评, 2021, 67(5):1357-1372. MA Feng, ZHANG Guangya, LIU Zuodong, et al. A preliminary discussion on evolution and hydrocarbon accumulation regularity of the superimposed basin in the eastern segment of the Tethyan tetonic domain[J]. Geological Review, 2021, 67(5):1357-1372. [17] 李维波,李江海,王洪浩,等.二叠纪古板块再造与岩相古地理特征分析[J].中国地质, 2015, 42(2):685-694. LI Weibo, LI Jianghai, WANG Honghao, et al. Characteristics of the reconstruction of Permian paleoplate and lithofacies paleogeography[J]. Geology in China, 2015, 42(2):685-694. [18] 肖威,张兵,姚永君,等.川东二叠系龙潭组页岩岩相特征与沉积环境[J].岩性油气藏, 2022, 34(2):152-162. XIAO Wei, ZHANG Bing, YAO Yongjun, et al. Lithofacies and sedimentary environment of shale of Permian Longtan Formation in eastern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(2):152-162. [19] 朱逸青,王兴志,冯明友,等.川东地区下古生界五峰组—龙马溪组页岩岩相划分及其与储层关系[J].岩性油气藏, 2016, 28(5):59-66. ZHU Yiqing, WANG Xingzhi, FENG Mingyou, et al. Lithofices classification and its relationship with reservoir of the Lower Paleozoic Wufeng-Longmaxi Formation in the eastern Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(5):59-66. [20] 翟常博,邓模,曹清古,等.川东地区上二叠统龙潭组泥页岩基本特征及页岩气勘探潜力[J].石油实验地质, 2021, 43(6):921-932. ZHAI Changbo, DENG Mo, CAO Qinggu, et al. Basic characteristics and exploration potential of shale gas in Longtan Formation of Upper Permian in eastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6):921-932. [21] 何斌,徐义刚,肖龙,等.峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据[J].地质学报, 2003, 77(2):194-202. HE Bin, XU Yigang, XIAO Long, et al. Generation and spatial distribution of the Emeishan large igneous Province:New evidence from stratigraphic records[J]. Acta Geologica Sinica, 2003, 77(2):194-202. [22] 王玉满,王淑芳,董大忠,等.川南下志留统龙马溪组页岩岩相表征[J].地学前缘, 2016, 23(1):119-133. WANG Yuman, WANG Shufang, DONG Dazhong, et al. Lithofacies characterization of Longmaxi Formation of the Lower Silurian, southern Sichuan[J]. Earth Science Frontiers, 2016, 23(1):119-133. [23] TRIBOVILLARD N, ALGEO T J, LYONS T, et al. Trace metals as paleo redox and paleo productivity proxies:An update[J]. Chemical Geology, 2006, 232(1/2):12-32. [24] HATCH J R, LEVENTHAL J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99(1/2/3):65-82. [25] JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of paleo redox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4):111-129. [26] RIMMER S M. Geochemical paleo redox indicators in DevonianMississippian black shales, central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4):373-391. [27] 遇昊,陈代钊,韦恒叶,等.二叠纪末期海洋缺氧:来自黄铁矿形态的证据[J].地质科学, 2011, 46(1):83-91. YU Hao, CHEN Daizhao, WEI Hengye, et al. Oceanic anoxia during the Late Permian:Evidence from pyrite morphology[J]. Chinese Journal of Geology, 2011, 46(1):83-91. [28] ZHOU Meifu, MALPAS J, SONG Xieyan, et al. A temporal link between the Emeishan large igneous province (SW China) and the end-Guadalupian mass extinction[J]. Earth and Planetary Science Letters, 2002, 196(3/4):113-122. [29] GUO Feng, FAN Weiming, WANG Yuejun, et al. When did the Emeishan mantle plume activity start?Geochronological and geochemical evidence from ultramafic-mafic dikes in southwestern China[J]. International Geology Review, 2004, 46(3):226-234. [30] 林良彪.川东二叠纪层序充填与沉积物分布规律[D].成都:成都理工大学, 2008. LIN Liangbiao. Sequence filling and sediment distribution of the Permian in eastern Sichuan Basin[D]. Chengdu:Chengdu University of Technology, 2008. [31] 张柏林.下扬子地区中二叠世古海洋环境演化及Capitanian生物灭绝事件成因机制研究[D].南京:南京大学, 2019. ZHANG Bolin. Middle Permian paleo-ocean environmental evolution and cause mechanisms of the Capitanian mass extinction in the Lower Yangtze region[D]. Nanjing:Nanjing University, 2019. [32] 李庆,卢浩,吴胜和,等.鄂尔多斯盆地南部三叠系长73亚段凝灰岩沉积成因及储层特征[J].石油与天然气地质, 2022, 43(5):1141-1154. LI Qing, LU Hao, WU Shenghe, et al. Sedimentary origins and reservoir characteristics of the Triassic Chang 73 tuffs in the southern Ordos Basin[J]. Oil & Gas Geology, 2022, 43(5):1141-1154. [33] 赵迪斐,郭英海,朱炎铭,等.龙马溪组页岩黄铁矿微观赋孔特征及地质意义[J].沉积学报, 2018, 36(5):864-876. ZHAO Difei, GUO Yinghai, ZHU Yanming, et al. Micropore characteristics and geological significance of Pyrite in shale rocks of Longmaxi Formation[J]. Acta Sedimentologica Sinica, 2018, 36(5):864-876. [34] 范建平,宋金民,江青春,等.川东地区中二叠统茅口组一段储层特征与形成模式[J].石油与天然气地质, 2022, 43(6):1413-1430. FAN Jianping, SONG Jinmin, JIANG Qingchun, et al. Reservoir characteristics and development model of the Middle Permian Mao-1 member in eastern Sichuan Basin[J]. Oil & Gas Geology, 2022, 43(6):1413-1430. |
[1] | 赵军, 李勇, 文晓峰, 徐文远, 焦世祥. 基于斑马算法优化支持向量回归机模型预测页岩地层压力[J]. 岩性油气藏, 2024, 36(6): 12-22. |
[2] | 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121. |
[3] | 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159. |
[4] | 洪智宾, 吴嘉, 方朋, 余进洋, 伍正宇, 于佳琦. 纳米限域下页岩中可溶有机质的非均质性及页岩油赋存状态[J]. 岩性油气藏, 2024, 36(6): 160-168. |
[5] | 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14. |
[6] | 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110. |
[7] | 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132. |
[8] | 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144. |
[9] | 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166. |
[10] | 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177. |
[11] | 徐田录, 吴承美, 张金凤, 曹爱琼, 张腾. 吉木萨尔凹陷二叠系芦草沟组页岩油储层天然裂缝特征与压裂模拟[J]. 岩性油气藏, 2024, 36(4): 35-43. |
[12] | 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24. |
[13] | 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108. |
[14] | 邹连松, 徐文礼, 梁西文, 刘皓天, 周坤, 霍飞, 周林, 文华国. 川东地区下侏罗统自流井组东岳庙段泥页岩沉积特征及物质来源[J]. 岩性油气藏, 2024, 36(4): 122-135. |
[15] | 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158. |
|