岩性油气藏 ›› 2023, Vol. 35 ›› Issue (5): 6270.doi: 10.12108/yxyqc.20230506
魏全超1, 李小佳2, 李峰2, 郝景宇1, 邓双林2, 吴娟2, 邓宾2, 王道军1
WEI Quanchao1, LI Xiaojia2, LI Feng2, HAO Jingyu1, DENG Shuanglin2, WU Juan2, DENG Bin2, WANG Daojun1
摘要: 通过薄片观察、流体包裹体分析、岩石地球化学测试以及盆地数值模拟等,对四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组脉体发育特征进行了研究,并判别了沉积期的流体活动期次和流体性质。研究结果表明: ①旺苍地区筇竹寺组发育2期方解石脉体和1期石英脉体,石英脉体的形成晚于方解石脉体,第一期方解石脉体形成于早志留世,成脉流体主要为层内地层水,受少量大气淡水和海水影响,与液态烃类流体一起充注,均一温度为83.1~136.2℃,盐度为0.4%~12.2%;第二期方解石脉体形成于早侏罗世,成脉流体为层内地层水,与液态烃类和高密度气相甲烷混合充注,均一温度为140.2~185.4℃,盐度为5.7%~17.3%;石英脉体形成于早白垩世,成脉流体为筇竹寺组硅质流体,与高密度气相甲烷一起充注,均一温度为162.1℃,盐度为13.8%。②研究区筇竹寺组方解石脉体样品的δ18OPDB值为-14.95‰~-9.17‰,绝大部分方解石脉体实测δ18OPDB值均小于早寒武世全球海水的平均值,其负偏移特征受控于成脉流体温度和δ18O丰度。方解石脉体和围岩中稀土元素富集,二者均具有Eu正异常和Ce无异常,流体来源于层内地层水。③研究区筇竹寺组受外源流体影响较小,节理和裂缝发育,并不沟通上下地层,有利于山前带筇竹寺组页岩气的聚集与封闭保存。
中图分类号:
[1] 柳卓,郝芳,刘鑫,等.川南宁西地区龙一段高密度甲烷包裹体发育特征及地质意义[J].地球科学, 2021, 46(9):3157-3171. LIU Zhuo, HAO Fang, LIU Xin, et al. Development characteristics and geological significance of high density methane inclusions in the Longmaxi member Ⅰ in the Ningxi area, southern Sichuan Basin[J]. Earth Science, 2021, 46(9):3157-3171. [2] 李文.涪陵与宜昌地区海相页岩裂缝脉体成因及流体包裹体古温压特征[D].武汉:中国地质大学(武汉), 2018. LI Wen. Origin of fracture veins of marine shale in Fuling and Yichang areas and characteristics of paleotemperature and pressure of fluid inclusions[D]. Wuhan:China University of Geosciences (Wuhan), 2018. [3] 董敏,郭伟,张林炎,等.川南泸州地区五峰组—龙马溪组古构造应力场及裂缝特征[J].岩性油气藏, 2022, 34(1):43-51. DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1):43-51. [4] 邱华宁,吴河勇,冯子辉,等.油气成藏40Ar-39Ar定年难题与可行性分析[J].地球化学, 2009, 38(4):405-411. QIU Huaning, WU Heyong, FENG Zihui, et al. The puzzledom and feasibility in determining emplacement ages of oil/gas reservoirs by 40Ar-39Ar techniques[J]. Geochimica, 2009, 38(4):405-411. [5] 刘昭茜,梅廉夫,邱华宁,等.中扬子地块南缘半坑古油藏成藏期及破坏期的40Ar/39Ar年代学约束[J].科学通报, 2011, 56(33):2782-2790. LIU Zhaoqian, MEI Lianfu, QIU Huaning, et al. 40Ar-39Ar geochronology constraints on hydrocarbon accumulation and destruction periods in the Bankeng paleo-reservoir in the southern margin of Middle Yangtze block[J]. Chinese Science Bulletin, 2011, 56(33):2782-2790. [6] 刘恩涛,赵建新,潘松圻,等.盆地流体年代学研究新技术:方解石激光原位U-Pb定年法[J].地球科学, 2019, 44(3):698-712. LIU Entao, ZHAO Jianxin, PAN Songqi, et al. A new technology of basin fluid geochronology:In-situ U-Pb dating of calcite[J]. Earth Science, 2019, 44(3):698-712. [7] 张敏强,黄思静,吴志轩,等.东海盆地丽水凹陷古近系储层砂岩中碳酸盐胶结物及形成机制[J].成都理工大学学报(自然科学版), 2007, 34(3):259-266. ZHANG Minqiang, HUANG Sijing, WU Zhixuan, et al. Carbonate cements and their formation mechanism in Paleogene sandstones of Lishui sag, East China Sea Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2007, 34(3):259-266. [8] 周政.长宁地区五峰组—龙马溪组页岩气富集特征研究[D].成都:成都理工大学, 2020. ZHOU Zheng. Enrichment laws of shale-gas in the WufengLongmaxi Formation, Changning area, southern Sichuan Basin[D]. Chengdu:Chengdu University of Technology, 2020. [9] 赵彦彦,李三忠,李达,等.碳酸盐(岩)的稀土元素特征及其古环境指示意义[J].大地构造与成矿学, 2019, 43(1):141-167. ZHAO Yanyan, LI Sanzhong, LI Da, et al. Rare earth element geochemistry of carbonate and its paleoenvironmental implications[J]. Geotectonica et Metallogenia, 2019, 43(1):141-167. [10] 高键.渝东地区五峰—龙马溪组页岩裂缝脉体古温压及古流体成因[D].武汉:中国地质大学(武汉), 2018. GAO Jian. Paleo-temperature and pressure and origin of paleofluid of fracture veins in the Wufeng-Longmaxi shales of Yudong area[D]. Wuhan:China University of Geosciences (Wuhan), 2018. [11] 刘德汉,肖贤明,田辉,等.论川东北地区发现的高密度甲烷包裹体类型与油裂解气和页岩气勘探评价[J].地学前缘, 2013, 20(1):64-71. LIU Dehan, XIAO Xianming, TIAN Hui, et al. Multiple types of high density methane inclusions and their relationships with exploration and assessment of oil-cracked gas and shale gas discovered in NE Sichuan[J]. Earth Science Frontiers, 2013, 20(1):64-71. [12] 潘占昆,刘冬冬,黄治鑫,等.川南地区泸州区块五峰组—龙马溪组页岩裂缝脉体中甲烷包裹体分析及古温压恢复[J].石油科学通报, 2019, 4(3):242-253. PAN Zhankun, LIU Dongdong, HUANG Zhixin, et al. Paleotemperature and paleopressure of methane inclusions in fracture cements from the Wufeng-Longmaxi shales in the Luzhou area, southern Sichuan Basin[J]. Petroleum Science Bulletin, 2019, 4(3):242-253. [13] 高乔,王兴志,朱逸青,等.川南地区龙马溪组元素地球化学特征及有机质富集主控因素[J].岩性油气藏, 2019, 31(4):72-84. GAO Qiao, WANG Xingzhi, ZHU Yiqing, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan[J]. Lithologic Reservoirs, 2019, 31(4):72-84. [14] 黄金亮,邹才能,李建忠,等.川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J].石油勘探与开发, 2012, 39(1):69-75. HUANG Jinliang, ZOU Caineng, LI Jianzhong, et al. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2012, 39(1):69-75. [15] 周文,徐浩,余谦,等.四川盆地及其周缘五峰组—龙马溪组与筇竹寺组页岩含气性差异及成因[J].岩性油气藏, 2016, 28(5):18-25. ZHOU Wen, XU Hao, YU Qian, et al. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas[J]. Lithologic Reservoirs, 2016, 28(5):18-25. [16] 苏奎,金振奎,杜宏宇,等.中上扬子地区早寒武世梅树村期岩相古地理[J].科技导报, 2009, 27(10):26-31. SU Kui, JIN Zhenkui, DU Hongyu, et al. Lithofacies palaeogeography of the Meishucun Age in the Middle and Upper Yangtze region[J]. Science & Technology Review, 2009, 27(10):26-31. [17] 周学海.米仓山前缘震旦系灯影组油气前景探讨[D].成都:成都理工大学, 2015. ZHOU Xuehai. Oil-gas prospects discussion of Sinian Dengying Formation at frontal area of Micang Mountain[D]. Chengdu:Chengdu University of Technology, 2015. [18] 李泽奇.川北米仓山构造及前缘地区震旦系灯影组深层—超深层储集层特征研究[D].成都:成都理工大学, 2017. LI Zeqi. Research on deep-ultra deep reservoir characteristics of Sinian Dengying Fm in Miangshan structures and front areas, northern Sichuan Basin[D]. Chengdu:Chengdu University of Technology, 2017. [19] 孙东.米仓山构造带构造特征及中—新生代构造演化[D].成都:成都理工大学, 2011. SUN Dong. The structural character and Meso-Cenozoic evolution of Micang Mountain structural zone, northern Sichuan Basin, China[D]. Chengdu:Chengdu University of Technology, 2011. [20] 牟传龙,梁薇,周恳恳,等.中上扬子地区早寒武世(纽芬兰世—第二世)岩相古地理[J].沉积与特提斯地质, 2012, 32(3):41-53. MOU Chuanlong, LIANG Wei, ZHOU Kenken, et al. Sedimentary facies and palaeogeography of the Middle-Upper Yangtze area during the Early Cambrian (Terreneuvian-Series 2)[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(3):41-53. [21] 闪晨晨.米仓山地区下寒武统牛蹄塘组页岩气成藏条件研究[D].西安:长安大学, 2020. SHAN Chenchen. Study on shale gas accumulation conditions of the Lower Cambrian Niutitang Formation in the Micangshan area[D]. Xi'an:Chang'an University, 2020. [22] 刘安,周鹏,陈孝红,等.运用方解石脉包裹体和碳氧同位素评价页岩气保存条件:以中扬子地区寒武系为例[J].天然气工业, 2021, 41(2):47-55. LIU An, ZHOU Peng, CHEN Xiaohong, et al. Evaluation of shale gas preservation conditions using calcite vein inclusions and C/O isotopes:A case study on the Cambrian strata of Middle Yangtze area[J]. Natural Gas Industry, 2021, 41(2):47-55. [23] 张鼐,田作基,冷莹莹,等.烃和烃类包裹体的拉曼特征[J].中国科学D辑:地球科学, 2007, 37(7):900-907. ZHANG Nai, TIAN Zuoji, LENG Yingying, et al. Raman characteristics of hydrocarbon and hydrocarbon inclusions[J]. Science China Series D:Earth Sciences, 2007, 37(7):900-907. [24] VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161:59-88. [25] O'NEIL J R, CLAYTON R N, MAYEDA T K. Oxygen isotope fractionation in divalent metal carbonates[J]. Journal of Chemical Physics, 1969, 51(12):5547-5558. [26] 瞿永泽,徐林刚,毛景文,等.贵州铜仁地区南华系大塘坡组黑色页岩型菱锰矿碳、氧同位素特征及锰矿成矿作用[J].矿床地质, 2018, 37(1):50-66. JU Yongze, XU Lingang, MAO Jingwen, et al. Carbon and oxygen isotope characteristics and mineralization of black shale-hosted manganese carbonate of Datangpo Formation in Tongren, Guizhou province[J]. Mineral Deposits, 2018, 37(1):50-66. [27] 李小佳,邓宾,刘树根,等.川南宁西地区五峰组—龙马溪组多期流体活动[J].岩性油气藏, 2021, 33(6):135-144. LI Xiaojia, DENG Bin, LIU Shugen, et al. Multi-stage fluid activity characteristics of Wufeng-Longmaxi Formation in Ningxi area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(6):135-144. [28] BRETAN P, YIELDING G, JONES H. Using calibrated shale gouge ration to estimate hydrocarbon column heights[J]. AAPG Bulletin, 2003, 87:397-413. [29] 杨兴业,何生,何治亮,等.京山地区方解石脉包裹体、同位素特征及古流体指示意义[J].中国石油大学学报(自然科学版), 2013, 37(1):19-26. YANG Xingye, HE Sheng, HE Zhiliang, et al. Characteristics and pale-fluid activity implications of fluid-inclusion and isotope of calcite veins in Jingshan area[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(1):19-26. [30] 罗涛,郭小文,舒志国,等.四川盆地焦石坝南部地区五峰组—龙马溪组裂缝脉体流体来源及形成时间[J].石油学报, 2021, 42(5):611-622. LUO Tao, GUO Xiaowen, SHU Zhiguo, et al. Fluid source and formation time of fracture veins of Wufeng Formation and Longmaxi Formation in the south of Jiaoshiba area, Sichuan Basin[J]. Acta Petrolei Sinica, 2021, 42(5):611-622. [31] 高键,何生,何治亮,等.中扬子京山地区方解石脉成因及其对油气保存的指示意义[J].石油与天然气地质, 2014, 35(1):33-41. GAO Jian, HE Sheng, HE Zhiliang, et al. Genesis of calcite vein and its implication to petroleum preservation in Jingshan region, Mid-Yangtze[J]. Oil & Gas Geology, 2014, 35(1):33-41. [32] LEE S G, LEE D H, KIMY Y, et al. Rare earth elements as indicators of groundwater environment changes in a fractured rock system:Evidence from fracture-filling calcite[J]. Applied Geochemistry, 2003, 18(1):135-143. [33] 汪林波,韩登林,王晨晨,等.库车坳陷克深井区白垩系巴什基奇克组孔缝充填特征及流体来源[J].岩性油气藏, 2022, 34(3):49-59. WANG Linbo, HAN Denglin, WANG Chenchen, et al. Characteristics of pore-fracture filling and fluid source of Cretaceous Bashijiqike Formation in Keshen well block, Kuqa Depression[J]. Lithologic Reservoirs, 2022, 34(3):49-59. [34] GAO Jian, HE Sheng, ZHAO Jianxin, et al. Geothermometry and geobarometry of overpressured Lower Paleozoic gas shales in the Jiaoshiba field, Central China:Insight from fluid inclusions in fracture cements[J]. Marine and Petroleum Geology, 2017, 83:124-139. [35] 朱传庆,徐明,单竞男,等.利用古温标恢复四川盆地主要构造运动时期的剥蚀量[J].中国地质, 2009, 36(6):1268-1277. ZHU Chuanqing, XU Ming, SHAN Jingnan, et al. Quantifying the denudations of major tectonic events in Sichuan Basin:Constrained by the paleothermal records[J]. Geology in China, 2009, 36(6):1268-1277. [36] 袁玉松,孙冬胜,李双建,等.四川盆地加里东期剥蚀量恢复[J].地质科学, 2013, 48(3):581-591. YUAN Yusong, SUN Dongsheng, LI Shuangjian, et al. Caledonian erosion thickness reconstruction in the Sichuan Basin[J]. Chinese Journal of Geology, 2013, 48(3):581-591. [37] 黄涵宇,何登发,李英强,等.四川盆地东南部泸州古隆起的厘定及其成因机制[J].地学前缘, 2019, 26(1):102-120. HUANG Hanyu, HE Dengfa, LI Yingqiang, et al. Determination and formation mechanism of the Luzhou paleo-uplift in the southeastern Sichuan Basin[J]. Earth Science Frontiers, 2019, 26(1):102-120. |
[1] | 闫雪莹, 桑琴, 蒋裕强, 方锐, 周亚东, 刘雪, 李顺, 袁永亮. 四川盆地公山庙西地区侏罗系大安寨段致密油储层特征及高产主控因素[J]. 岩性油气藏, 2024, 36(6): 98-109. |
[2] | 陈康, 戴隽成, 魏玮, 刘伟方, 闫媛媛, 郗诚, 吕龑, 杨广广. 致密砂岩AVO属性的贝叶斯岩相划分方法——以川中地区侏罗系沙溪庙组沙一段为例[J]. 岩性油气藏, 2024, 36(5): 111-121. |
[3] | 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110. |
[4] | 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14. |
[5] | 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34. |
[6] | 黄向胜, 闫琢玉, 张东峰, 黄合庭, 罗程飞. 琼东南盆地Ⅱ号断裂带新生界多期热流体活动与天然气运聚特征[J]. 岩性油气藏, 2024, 36(5): 67-76. |
[7] | 张晓丽, 王小娟, 张航, 陈沁, 关旭, 赵正望, 王昌勇, 谈曜杰. 川东北五宝场地区侏罗系沙溪庙组储层特征及主控因素[J]. 岩性油气藏, 2024, 36(5): 87-98. |
[8] | 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24. |
[9] | 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108. |
[10] | 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158. |
[11] | 计玉冰, 郭冰如, 梅珏, 尹志军, 邹辰. 四川盆地南缘昭通示范区罗布向斜志留系龙马溪组页岩储层裂缝建模[J]. 岩性油气藏, 2024, 36(3): 137-145. |
[12] | 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157. |
[13] | 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39. |
[14] | 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83. |
[15] | 白雪峰, 李军辉, 张大智, 王有智, 卢双舫, 隋立伟, 王继平, 董忠良. 四川盆地仪陇—平昌地区侏罗系凉高山组页岩油地质特征及富集条件[J]. 岩性油气藏, 2024, 36(2): 52-64. |
|