岩性油气藏 ›› 2025, Vol. 37 ›› Issue (3): 165–175.doi: 10.12108/yxyqc.20250315

• 地质勘探 • 上一篇    

裂缝-孔隙型碳酸盐岩油藏加密井井位部署新方法——以渤海湾盆地黄骅坳陷唐海油田寒武系油藏为例

张庆龙, 毛元元, 冯建松, 袁学生, 周微, 朱福金, 轩玲玲   

  1. 中国石油冀东油田分公司 陆上作业区, 河北 唐山 063004
  • 收稿日期:2024-05-13 修回日期:2024-07-26 发布日期:2025-05-10
  • 第一作者:张庆龙(1988—),男,硕士,工程师,主要从事油气田开发相关研究工作。地址:(063004)河北省唐山市曹妃甸区新城大街179号。Email:1097759734@qq.com。
  • 基金资助:
    国家自然科学基金项目“富油凹陷压力梯度与油气运移方式量化表征”(编号:41972141)资助。

Quantitative selection and application of well locations for encrypted wells in fractured-porosity carbonate rocks:A case study of Cambrian oil reservoirs in Tanghai Oilfield,Huanghua Depression,Bohai Bay Basin

ZHANG Qinglong, MAO Yuanyuan, FENG Jiansong, YUAN Xuansheng, ZHOU Wei, ZHU Fujin, XUAN Lingling   

  1. Onshore Oilfield, PetroChina Jidong Oilfield Company, Tangshan 063004, Hebei, China
  • Received:2024-05-13 Revised:2024-07-26 Published:2025-05-10

摘要: 渤海湾盆地黄骅坳陷唐海油田寒武系裂缝-孔隙型碳酸盐岩油藏地层能量下降快,整体采收率低,为了解决合理部署加密井的问题,提出了一种井位定量优选的新方法。研究结果表明:①裂缝-孔隙型碳酸盐岩油藏的单井累计产油量主要受单井控制可动剩余油量、储层裂缝平均渗透率、单储层平均厚度、储层裂缝平均孔隙度以及基质平均渗透率的综合影响,其中单井控制可动剩余油量的影响最大。②井位定量优选方法为综合利用测井、地震、岩心薄片等资料,建立三维地质模型及单井控制可动剩余油模型;通过三维地质模型、油藏数值模拟成果及单井生产动态数据相关性分析,对各个影响因素的相对重要程度进行排序;利用改进的层次分析法计算各个影响因素的权重和综合“甜点”系数,优选综合“甜点”系数高值进行井位部署。③该方法在唐海油田T180X2区块寒武系徐庄组与毛庄组储层的井位部署中取得了较好效果,3口探井均获得较高的单井产量,全生命周期累产油20 800 t,且综合“甜点”系数与单井全生命周期累产油量呈现良好的正相关关系。

关键词: 裂缝-孔隙型碳酸盐岩油藏, 加密井, 三维地质模型, 油藏数值模拟, 改进的层次分析法, 综合"甜点"系数, 单井控制可动剩余油量, 储层裂缝平均渗透率, 寒武系, 唐海油田

Abstract: The formation energy of Cambrian fractured porous carbonate reservoirs in Tanghai Oilfield,Bohai Bay Basin decreases rapidly,and the overall recovery rate is low. In order to solve the problem of deploying encrypted well locations reasonably,a new method for quantitative optimization of well locations was proposed. The results show that:(1)The cumulative oil production of a single well in a fractured porous carbonate reservoir throughout its entire life cycle is mainly influenced by the combined effects of single well controlled movable remaining oil,average permeability of reservoir fractures,average thickness of single reservoir,average porosity of reservoir fractures,and average permeability of the matrix,with single well controlled movable remaining oil having the greatest impact.(2)The quantitative optimization method for well location is to comprehensively utilize logging,seismic,core thin section and other data to establish a three-dimensional geological model and a single well controlled movable residual oil model;Sort the relative importance of each influencing factor through correlation analysis of models,reservoir numerical simulation results and single well production performance data;Utilize the improved Analytic Hierarchy Process to calculate the weights of various influencing factors and the comprehensive“sweet spot”coefficient,and select the well locations with high comprehensive“sweet spot” coefficients for deployment.(3)This method has achieved good results in the optimization of well location targets in carbonate reservoirs of Cambrian Xuzhuang Formation and Maozhuang Formation in T180X2 Block of Tanghai Oilfield. All three exploration wells have achieved high single well production,with a cumulative oil production of 20 800 tons throughout the entire life cycle. The comprehensive“sweet spot”coefficient shows a good positive correlation with the cumulative oil production of a single well throughout its life cycle.

Key words: fractured-porous carbonate reservoir, infill wells, three-dimensional geological model, reservoir numerical simulation, improved analytic hierarchy process, comprehensive "dessert" coefficient, single well control of movable remaining oil volume, average permeability of reservoir fractures, Cambrian, Tanghai Oilfield

中图分类号: 

  • TE344
[1] ROEHL P O,CHOQUETTE P W. Carbonate petroleum reservoirs[M]. New York:Springer Verlag,1985:1-15.
[2] 李凌,张照坤,李明隆,等. 四川盆地威远-高石梯地区二叠系栖霞阶层序地层特征及有利储层分布[J]. 岩性油气藏, 2022,34(6):32-46. LI Ling,ZHANG Zhaokun,LI Minglong,et al. Sequence stratigraphic characteristics and favorable reservoirs distribution of Permian Qixia stage in Weiyuan-Gaoshiti area,Sichuan Basin[J]. Lithologic Reservoirs,2022,34(6):32-46.
[3] 孙夕平,张昕,李璇,等. 基于叠前深度偏移的基岩潜山风化淋滤带储层预测[J]. 岩性油气藏,2021,33(1):220-228. SUN Xiping,ZHANG Xin,LI Xuan,et al. Reservoir prediction for weathering and leaching zone ofbedrock buried hill based on seismic pre-stack depth migration[J]. Lithologic Reservoirs, 2021,33(1):220-228.
[4] 王勇,姜汉桥,郭晨,等. 基于微流控技术的裂缝性碳酸盐岩油藏脱气后水窜治理实验研究[J]. 中国海上油气,2023,35(1):78-88. WANG Yong,JIANG Hanqiao,GUO Chen,et al. Microfluidics experimental investigation of water channeling control strategy after degassing in fractured carbonate reservoirs[J]. China Offshore Oil and Gas,2023,35(1):78-88.
[5] 叶双江,李发有,李苗,等. 裂缝孔隙型碳酸盐岩底水油藏水平井优化技术研究[J]. 科学技术与工程,2017,17(22):191-196. YE Shuangjiang,LI Fayou,LI Miao,et al. Horizontal well optimization technique in fracture-pore carbonate reservoir with bottom water[J]. Science Technology and Engineering,2017, 17(22):191-196.
[6] 袁士义,宋新民,冉启全. 裂缝性油藏开发技术[M]. 北京:石油工业出版社,2004:167-330. YUAN Shiyi,SONG Xinmin,RAN Qiquan. Fractured reservoir development technology[M]. Beijing:Petroleum Industry Press,2004:167-330.
[7] 唐煜哲,柴辉,王红军,等. 中亚阿姆河右岸东部地区侏罗系盐下碳酸盐岩储层特征及预测新方法[J]. 岩性油气藏, 2023,35(6):147-158. TANG Yuze,CHAI Hui,WANG Hongjun,et al. Characteristics and new prediction methods of Jurassic subsalt carbonate reservoirs in the eastern right bank of Amu Darya,central Asia[J]. Lithologic Reservoirs,2023,35(6):147-158.
[8] 谢鹏,陈鹏羽,赵海龙,等. 碳酸盐岩裂缝-孔隙型储集层水侵特征及残余气分布规律[J]. 新疆石油地质,2023,44(5):583-591. XIE Peng,CHEN Pengyu,ZHAO Hailong,et al. Water invasion characteristics and residual gas distribution in fracturedporous carbonate reservoirs[J]. Xinjiang Petroleum Geology, 2023,44(5):583-591.
[9] 李娟,郑茜,孙松领,等. 应用测井储层因子预测变质碎屑岩裂缝-孔隙型储层:以海拉尔盆地贝尔凹陷基岩为例[J]. 岩性油气藏,2021,33(6):165-176. LI Juan,ZHENG Qian,SUN Songling,et al. Prediction of fracturepore reservoirs in metamorphic clastic rocks using logging reservoir factors:A case study of basement in Beier Sag,Hailar Basin[J]. Lithologic Reservoirs,2021,33(6):165-176.
[10] 徐安娜,穆龙新,裘怿楠. 我国不同沉积类型储集层中的储量和可动剩余油分布规律[J]. 石油勘探与开发,1998,25(5):41-44. XU Anna,MU Longxin,QIU Yinan. Distribution pattern of OOIP and remaining mobile oil CM(83 mm)in different types of sedimentary reservoir of China[J]. Petroleum Exploration and Development,1998,25(5):41-44.
[11] 裴森奇,胡欣,邓波,等. 平落坝须二段气藏孔隙-裂缝型储层建模及数模技术[J]. 天然气勘探与开发,2020,43(4):77-84. PEI Senqi,HU Xin,DENG Bo,et al. Modeling and numerical simulation for porous-fractured gas reservoirs of Xujiahe 2 Member,Pingluoba region,Sichuan Basin[J]. Natural Gas Exploration and Development,2020,43(4):77-84.
[12] 朱文娟,喻高明,严维峰,等. 油田经济极限井网密度的确定[J]. 断块油气田,2008,15(4):66-67. ZHU Wenjuan,YU Gaoming,YAN Weifeng,et al. Determination of economic limit for well pattern density of oilfield[J]. Fault-Block Oil and Gas Field,2008,15(4):66-67.
[13] 梁淞,贾京坤,杨航. 基于单井控制储量与井网密度的老油田经济极限井网密度计算新方法[J]. 油气地质与采收率, 2014,21(4):104-106. LIANG Song,JIA Jingkun,YANG Hang. Well pattern calculation method based on economic limit in old oilfields using well spacing and well-controlled reserves[J]. Petroleum Geology and Recovery Efficiency,2014,21(4):104-106.
[14] 李敬淞,孙义新,熊海灵,等. 油田开发经济评价[M]. 北京:石油工业出版社,2000:85-96. LI Jingsong,SUN Yixin,XIONG Hailing,et al. Oilfield development economic evaluation[M]. Beijing:Petroleum Industry Press,2000:85-96.
[15] 吉敏. 不同驱替模式下致密油水平井注水开发经济效益评价:以J油田M区为例[J]. 石油地质与工程,2020,34(4):69-73. JI Min. Economic benefit evaluation of waterflooding development of tight oil horizontal wells under different displacement modes:By taking M area in J oilfield as an example[J]. Petroleum Geology and Engineering,2020,34(4):69-73.
[16] 常建娥,蒋太立. 层次分析法确定权重的研究[J]. 武汉理工大学学报:信息与管理工程版本,2007,29(1):153-156. CHANG Jian'e,JIANG Taili. Research on the weight of coefficient through analytic hierarchy process[J]. Journal of Wuhan University of Technology:Information & Management Engineering,2007,29(1):153-156.
[17] 张庆龙,刘磊,贾志伟,等. 复杂断块油藏三维地质模型的多级定量评价[J]. 西南石油大学学报(自然科学),2021,43(3):61-70. ZHANG Qinglong,LIU Lei,JIA Zhiwei,et al. Multilevel quantitative evaluation of 3D geological model of complex fault block reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2021,43(3):61-70.
[18] 余成林,林承焰,尹艳树. 合采合注油藏窜流通道发育区定量判识方法[J]. 中国石油大学学报(自然科学版),2009,33(2):23-28. YU Chenglin,LIN Chengyan,YIN Yanshu. Quantitative identifying method for channeling path growing area in reservoirs of commingled injection and production[J]. Journal of China University of Petroleum(Edition of Natural Science),2009,33(2):23-28.
[19] 熊波,朱冬雪,方朝合,等. 基于BP算法的中深层同轴套管换热量预测[J]. 岩性油气藏,2024,36(2):15-22. XIONG Bo,ZHU Dongxue,FANG Chaohe,et al. Heat transfer prediction of medium and deep coaxial casing based on BP algorithm[J]. Lithologic Reservoirs,2024,36(2):15-22.
[20] 王学军,李莎. 基于层次分析的聚类算法在油田生产数据中的应用[J]. 承德石油高等专科学校学报,2016,18(5):22-24. WANG Xuejun,LI Sha. Application of AHP-based clustering algorithm in processing oilfield production data[J]. Journal of Chengde Petroleum College,2016,18(5):22-24.
[21] 桂金咏,李胜军,高建虎,等. 基于特征变量扩展的含气饱和度随机森林预测方法[J]. 岩性油气藏,2024,36(2):65-75. GUI Jinyong,LI Shengjun,GAO Jianhu,et al. A random forests prediction method for gas saturationbased on feature variable extension[J]. Lithologic Reservoirs,2024,36(2):65-75.
[22] 罗莉涛,廖广志,刘卫东,等. Marangoni对流启动残余油微观机理[J]. 石油学报,2015,36(9):1127-1134. LUO Litao,LIAO Guangzhi,LIU Weidong,et al. Micromechanism of residual oil mobilization by Marangoni convection[J]. Acta Petrolei Sinica,2015,36(9):1127-1134.
[23] 李东晖,田玲钰,聂海宽,等. 基于模糊层次分析法的页岩气井产能影响因素分析及综合评价模型:以四川盆地焦石坝页岩气田为例[J]. 油气藏评价与开发,2022,12(3):417-428. LI Donghui,TIAN Lingyu,NIE Haikuan,et al. Factor analysis and comprehensive evaluation model of shale gas well productivity based on fuzzy analytic hierarchy process:Taking Jiaoshiba shale gas field in Sichuan Basin as an example[J]. Petroleum Reservoir Evaluation and Development,2022,12(3):417-428.
[24] 刘荣和,张文彪,冷有恒. 裂缝-孔隙型碳酸盐岩气藏稳态产能评价方法[J]. 特种油气藏,2022,29(2):122-127. LIU Ronghe,ZHANG Wenbiao,LENG Youheng. Steady productivity evaluation method of fractured-porous carbonate gas reservoirs[J]. Special Oil & Gas Reservoirs,2022,29(2):122-127.
[25] 吕栋梁,杨健,林立新,等. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏,2023,35(1):145-159. LYU Dongliang,YANG Jian,LIN Lixin,et al. Characterization model of oil-water relative permeability curves of sandstone reservoir and its application in numerical simulation[J]. Lithologic Reservoirs,2023,35(1):145-159.
[1] 何岩, 许维娜, 党思思, 牟蕾, 林少玲, 雷章树. 准噶尔盆地陆梁地区侏罗系西山窑组钙质夹层成因及勘探意义[J]. 岩性油气藏, 2025, 37(1): 90-101.
[2] 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34.
[3] 邱玉超, 李亚丁, 文龙, 罗冰, 姚军, 许强, 文华国, 谭秀成. 川东地区寒武系洗象池组构造特征及成藏模式[J]. 岩性油气藏, 2024, 36(5): 122-132.
[4] 卢科良, 吴康军, 李志军, 孙永河, 徐少华, 梁锋, 刘露, 李爽. 川中古隆起北斜坡寒武系龙王庙组油气成藏特征及演化模式[J]. 岩性油气藏, 2024, 36(4): 159-168.
[5] 窦立荣, 刘化清, 李博, 齐雯, 孙东, 尹路, 韩双彪. 全球天然氢气勘探开发利用进展及中国的勘探前景[J]. 岩性油气藏, 2024, 36(2): 1-14.
[6] 包汉勇, 刘皓天, 陈绵琨, 盛贤才, 秦军, 陈洁, 陈凡卓. 川东地区高陡构造带寒武系洗象池群天然气成藏条件[J]. 岩性油气藏, 2024, 36(2): 43-51.
[7] 胡忠贵, 王纪煊, 李世临, 郭艳波, 左云安, 庞宇来. 川东地区寒武系高台组白云岩-蒸发岩共生地层高频层序划分及地质意义[J]. 岩性油气藏, 2023, 35(2): 113-124.
[8] 王亮, 苏树特, 马梓柯, 蒲静, 姚蔺芳, 刘宇, 罗洋. 川中地区寒武系沧浪铺组沉积特征[J]. 岩性油气藏, 2022, 34(6): 19-31.
[9] 刘永立, 李国蓉, 何钊, 田家奇, 李肖肖. 塔北地区寒武系层序地层格架与台缘带展布特征[J]. 岩性油气藏, 2022, 34(6): 80-91.
[10] 李珊珊, 姜鹏飞, 刘磊, 雷程, 曾云贤, 陈仕臻, 周刚. 四川盆地高磨地区寒武系沧浪铺组碳酸盐岩颗粒滩地震响应特征及展布规律[J]. 岩性油气藏, 2022, 34(4): 22-31.
[11] 刘阳平, 吴博然, 于忠良, 余成林, 王立鑫, 尹艳树. 辫状河砂岩储层三维地质模型重构技术——以冀东油田高尚堡区块新近系馆陶组为例[J]. 岩性油气藏, 2022, 34(4): 159-170.
[12] 李璐萍, 梁金同, 刘四兵, 郭艳波, 李堃宇, 和源, 金九翔. 川中地区寒武系洗象池组白云岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2022, 34(3): 39-48.
[13] 文华国, 梁金同, 周刚, 邱玉超, 刘四兵, 李堃宇, 和源, 陈浩如. 四川盆地及周缘寒武系洗象池组层序-岩相古地理演化与天然气有利勘探区带[J]. 岩性油气藏, 2022, 34(2): 1-16.
[14] 张皓宇, 李茂, 康永梅, 吴泽民, 王广. 鄂尔多斯盆地镇北油田长3油层组储层构型及剩余油精细表征[J]. 岩性油气藏, 2021, 33(6): 177-188.
[15] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!