岩性油气藏 ›› 2015, Vol. 27 ›› Issue (2): 3137.doi: 10.3969/j.issn.1673-8926.2015.02.006
徐祖新1,韩淑敏2,王启超3
X U Zuxin1, HAN Shumin2,WANG Qichao3
摘要:
黄铁矿是富有机质沉积的特征矿物,是恢复沉积环境的重要指标,也可以指示页岩的含油气性。基于氩离子抛光-扫描电镜(Ar-SEM)技术获得陡山沱组页岩高分辨率扫描电镜图像,利用 ImageJ 软件统计和分析草莓状黄铁矿粒径大小,探讨黄铁矿含量和吸附气含量之间的关系。 结果表明:①陡山沱组页岩中草莓状黄铁矿粒径小,代表其经历了较长时间的静水缺氧沉积环境,对有机质的富集和保存均有利,为页岩气的形成提供了良好的沉积条件;②陡山沱组页岩储层中黄铁矿含量与吸附气含量呈正相关关系,根据黄铁矿的含量可以预测页岩吸附气;③铁含量越高越有利于有机质富集,而有机质含量的高低直接影响着页岩气的生成能力和赋存能力,根据平面上黄铁矿的富集程度可以预测页岩含气区。
[1]张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18. Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry,2004, 24(7):15-18. [2]霍凤斌,张涛,徐发,等.“两层·六端元”页岩评价方法在下扬子地区的应用[J].岩性油气藏,2013,25(3):87-91. Huo Fengbin,Zhang Tao,Xu Fa, et al. Application of “two layer and six terminal element” shale evaluation method in Lower Yangtze area[J]. Lithologic Reservoirs,2013,25(3):87-91. [3]熊镭,张超谟,张冲,等.A 地区页岩气储层总有机碳含量测井评价方法研究[J].岩性油气藏,2014,26(3):74-78. Xiong Lei,Zhang Chaomo,Zhang Chong,et al. Research on logging evaluation method of TOC content of shale gas reservoir in A area [J]. Lithologic Reservoirs,2014,26(3):74-78. [4]张小龙,张同伟,李艳芳,等.页岩气勘探和开发进展综述[J].岩性油气藏,2013,25(2):116-122. Zhang Xiaolong,Zhang Tongwei,Li Yanfang, et al. Research advance in exploration and development of shale gas[J]. Lithologic Reservoirs, 2013,25(2):116-122. [5]罗健,戴鸿鸣,邵隆坎,等.四川盆地下古生界页岩气资源前景预测[J].岩性油气藏,2012,24(4):70-74. Luo Jian,Dai Hongming,Shao Longkan,et al. Prospect prediction for shale gas resources of the Lower Paleozoic in Sichuan Basin[J]. Lithologic Reservoirs,2012,24(4):70-74. [6]郭秋麟,周长迁,陈宁生,等.非常规油气资源评价方法研究[J].岩性油气藏,2011,23(4):12-19. Guo Qiulin,Zhou Changqian,Chen Ningsheng,et al. Evaluation methods for unconventional hydrocarbon resources[J]. Lithologic Reservoirs,2011,23(4):12-19. [7]Guidry F K,Houston R,Walsh J W. Well Log Interpretation of a Devonian Gas Shale:An example analysis[R]. SPE 26932,1993: 393-394. [8]Shelley B,Johnson B J,Fielder E O,et al. Data analysis of barnett shale completions[R]. SPE 100674, 2008. [9]Lewis R,Ingraham D,Pearcy M,et al. New evaluation techniques for gas shale reservoirs[C]. Schlumberger:Reservoir Symposium, 2004:1-11. [10]Grieser B,Halliburton J B. Identification of production potential in unconventional reservoirs[R]. SPE 106623,2007. [11]王阳,陈洁,胡琳,等.沉积环境对页岩气储层的控制作用——— 以中下扬子区下寒武统筇竹寺组为例[J].煤炭学报,2013,38(5):845-850. Wang Yang,Chen Jie,Hu Lin, et al. Sedimentary environment control on shale gas reservoir:A case study of Lower Cambrian Qiongzhusi Formation in the Middle Lower Yangtze area [J]. Journal of China Coal Society,2013,38(5):845-850. [12]Loucks R G., Ruppel S C. Mississippian barnett shale:lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas[J]. AAPG Bulletin,2007,91(4): 579-601. [13]吴勘,马强分,冯庆来.鄂西建始中二叠世孤峰组孔隙特征及页岩气勘探意义[J].地球科学——中国地质大学学报,2012,37(增刊 2):175-183. Wu Kan,Ma Qiangfen,Feng Qinglai. Middle permian pore characteristics and shale gas exploration significance from the Gufeng Formation in Jianshi,Western Hubei[J]. Earth Science—Journal of China University of Geosciences,2012,37 (S2):175-179. [14]Vergés E,Tost D,Ayala D,et al. 3D pore analysis of sedimentary rocks [J]. Sedimentary Geology,2011,234:109-115. [15]常华进,储雪蕾.草莓状黄铁矿与古海洋环境恢复[J].地球科学进展,2011,26(5):475-481. Chang Huajin,Chu Xuelei. Pyrite framboids and palaeo-ocean redox condition reconstruction[J]. Advances in Earth Science,2011,26 (5): 475-481. [16]吴朝东.湘西震旦—寒武纪交替时期古海洋环境的恢复[J].地学前缘,2000,7(增刊 2):45-57. Wu Zhaodong. Aancient marine environment during the recovery period of Sinian-Cambrian[J]. Earth Science Frontiers,2000,7(S2): 45-57. [17]聂海宽, 张金川.页岩气聚集条件及含气量计算———以四川盆地及其周缘下古生界为例[J].地质学报,2012,86(2):349-361. Nie Haikuan,Zhang Jinchuan. Shale gas accumulation conditions and gas content calculation:A case study of Sichuan basin and its periphery in the Lower Paleozoi[J]. Acta Geologica Sinica,2011,86 (2):349-361. [18]邹才能,陶士振,侯连华,等.非常规油气地质[M].北京:地质出版社,2011:140-151. Zou Caineng,Tao Shizhen,Hou Lianhua,et al. The unconventional oil and gas geology[M]. Beijing:Geology Press,2011:140-151. [19]Canfield D,Raiswell R,Westrich J,et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology,1986,51(1/2):149-155. [20]Kaplan I R,Bird K J,Tailleur I L. Source of molten elemental sulfur and hydrogen sulfide from the Inigok well,northern Alaska[J]. AAPG Bulletin,2012,96(2):337-354. [21]Berner R A,De Leeuw J W,Spiro B, et al. Sulphate reduction,organic matter decomposition and pyrite formation (and discussion)[J]. Philosophical Transactions of the Royal Society of London,1985, 315(1531):25-38. [22]王韶华.中扬子震旦统油气藏特征及勘探潜力[D].武汉:中国地质大学,2010. Wang Shaohua. Sinian gas reservoir characteristics and exploration potential of Middle Yangtze area [D]. Wuhan:China University of Geosciences,2010. [23]陈一鸣,魏秀丽,徐欢.北美页岩气储层孔隙类型研究的启示[J].复杂油气藏,2012,5(4):19-22. Chen Yiming,Wei Xiuli,Xu Huan. Suggestions from the research of pore types of shale gas reservoir in North America[J]. Complex Hydrocarbon Reservoirs,2012,5(4):19-22. [24]李洪星,陆现彩,边立曾,等.草莓状黄铁矿微晶形态和成分的地质意义———以栖霞组含泥灰岩为例[J].矿物学报,2012,32(3):443-448. Li Hongxing,Lu Xiancai,Bian Lizeng,et al. Geological significance of microcrystalline morphology and composition of framboids pyrite: A case study of marl of Chihsia Formation[J]. Acta Mineralogica Sinica,2012,32 (3):443-448. [25]Love L G,Amstutz G C. Review of microscopic pyrite from the Devonian Chattanooga Shale and Rammelsberg Banderz[J]. Fortschrift Mineralogie,1966,43:273-309. [26]Rickard D T. The origin of framboids[J]. Lithos,1970,3(3):269-293. [27]Wilkin R T,Barnes H L,Brantley S L. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta,1996,60(20):3897-3912. [28]Zhou Chuanming,Jiang Shaoyong. Palaeoceano graphic redox environments for the lower Cambrian Hetang Formation in south China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence[J]. Palaeogeography Palaeoclimatology Palaeoecology,2009,271(3/4):279-286. [29]杨雪英,龚一鸣.莓状黄铁矿:环境与生命的示踪计[J].地球科学———中国地质大学学报,2011,36(4):643-658. Yang Xueying,Gong Yiming. Pyrite framboid:Indicator of environments and life[J]. Earth Science—Journal of China University of Geosciences, 2011,36(4):643-658. [30]王银改. ImageJ 软件在检验医学图像分析处理中的应用[J].中华检验医学杂志,2005,28(7):747-748. Wang Yingai. ImageJ software in medical image analysis processing of applications[J]. Chinese Journal of Laboratory Medicine,2005, 28 (7):747-748. [31]王银改,王清改,翟素平.ImageJ 软件辅助分析在网织红细胞计数中的应用[J].临床检验杂志,2005,23(3):210-211. Wang Yingai,Wang Qinggai,Zhai Suping. The application of ImageJ software in the red blood cell count[J]. Chinese Journal of Clinical Laboratory Scienc,2005,23(3):210-211. [32]宋玉丹. ImageJ 在矿物初碎检测中的应用[D]. 太原:太原理工大学,2008. Song Yudan. Study on the application of Image in the mineral[D].Taiyuan:Taiyuan University of Technology Master’s Thesis,2008. [33]Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science,1998,298 (7):537-552. [34]Loucks R G,Reed R M,Ruppel S C,et al. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009,79:848-861. [35]Curtis M E,Sondergeld C H,Ambrose R J,et al. Microstructural investigation of gas shales in two and three dimensions using nanometerscale resolution imaging[J]. AAPG Pulletin,2012,96(4):665-677. [36]Shiley R H,Cluff R M,Dkerson D R, et al. Correlation of natural gas content to iron species in the New Albany shale group[J]. Fuel,1981. 60(8):732-738. |
[1] | 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76. |
[2] | 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134. |
[3] | 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148. |
[4] | 王洪星, 韩诗文, 胡佳, 潘志浩. 松辽盆地德惠断陷白垩系火石岭组凝灰岩储层预测及成藏主控因素[J]. 岩性油气藏, 2024, 36(5): 35-45. |
[5] | 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84. |
[6] | 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34. |
[7] | 钟会影, 余承挚, 沈文霞, 毕永斌, 伊然, 倪浩铭. 考虑启动压力梯度的致密油藏水平井裂缝干扰渗流特征[J]. 岩性油气藏, 2024, 36(3): 172-179. |
[8] | 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18. |
[9] | 郭海峰, 肖坤叶, 程晓东, 杜业波, 杜旭东, 倪国辉, 李贤兵, 计然. 乍得Bongor盆地花岗岩潜山裂缝型储层有效渗透率计算方法[J]. 岩性油气藏, 2023, 35(6): 117-126. |
[10] | 杜长鹏. 松辽盆地莺山-双城断陷白垩系致密火山岩天然气成藏条件及主控因素[J]. 岩性油气藏, 2023, 35(4): 115-124. |
[11] | 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159. |
[12] | 罗群, 张泽元, 袁珍珠, 许倩, 秦伟. 致密油甜点的内涵、评价与优选——以酒泉盆地青西凹陷白垩系下沟组为例[J]. 岩性油气藏, 2022, 34(4): 1-12. |
[13] | 刘宗堡, 李雪, 郑荣华, 刘化清, 杨占龙, 曹松. 浅水三角洲前缘亚相储层沉积特征及沉积模式——以大庆长垣萨北油田北二区萨葡高油层为例[J]. 岩性油气藏, 2022, 34(1): 1-13. |
[14] | 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12. |
[15] | 王昌进, 张赛, 徐静磊. 基于渗透率修正因子的气体有效扩散系数分形模型[J]. 岩性油气藏, 2021, 33(3): 162-168. |
|