岩性油气藏 ›› 2017, Vol. 29 ›› Issue (4): 7380.doi: 10.3969/j.issn.1673-8926.2017.04.009
熊连桥1,2, 于福生3, 姚根顺2, 高崇龙3, 王玉4
XIONG Lianqiao1,2, YU Fusheng3, YAO Genshun2, GAO Chonglong3, WANG Yu4
摘要: 准噶尔盆地西北缘车60井区齐古组砂砾岩储层中发育大量晶型完好的自生黄铁矿,且集中发育于泥质含量低、储层物性好、含油饱和度高的辫状河三角洲砂体中。前期基于测井响应特征的研究将这些发育黄铁矿的层段解释为泥岩隔夹层,直接导致对储集砂体连通关系与剩余油分布规律等认识出现偏差,遗漏了油藏内具有油气储量挖掘潜力的部位。利用测井资料结合岩心观察,建立了研究区黄铁矿发育砂体的识别图版;基于三维地质建模技术,结合区域地质背景建立了研究区黄铁矿的形成模式。在此基础上,根据等效体积模型对黄铁矿发育砂体的孔隙度进行了重新解释,并计算了砂体中黄铁矿的含量。研究表明,该区黄铁矿的分布受断层控制,同时砂岩储层中的黄铁矿可以指示含油砂体的分布,并非为泥岩层或隔夹层;利用等效体积模型得到的黄铁矿发育砂体孔隙度比原解释模型更接近岩心实测分析数据;这些砂体可成为剩余油的聚集区或储量挖潜区。该研究结果可丰富对黄铁矿的认识并对剩余油分布研究或油田注水开发具有重要的指导意义。
中图分类号:
[1] 德勒恰提, 王威, 李宏, 等.准噶尔盆地车排子凸起侏罗系齐古组沉积相分析及储层展布——以车60井区齐古组地层-岩性油气藏为例.沉积学报, 2013, 31(3):545-552. DELEQIATI, WANG W, LI H, et al. Facies of the Jurassic Qigu Formation and distribution of reservoir in the Chepaizi uplift, Junggar Basin:a case study on Qigu Formation stratigraphiclithologic reservoirs in well Che 60 block. Acta Sedimentologica Sinica, 2013, 31(3):545-552. [2] 徐国风, 邵洁涟. 黄铁矿的标型特征及其实际意义. 地质论评, 1980, 26(6):541-546. XU G F, SHAO J L. Implications and typomorphic characteristics of pyrite. Geological Review, 1980, 26(6):541-546. [3] 姜冬冬, 陈萍, 唐修义, 等.淮南煤田8煤层中黄铁矿的特征研究及成因分析.中国煤炭地质, 2008, 21(1):22-26. JIANG D D, CHEN P, TANG X Y, et al. Characteristic study and geological genesis analysis of pyrite in No. 8 coal in Huainan Coalfield. Coal Geology of China, 2008, 21(1):22-26. [4] 沈明道, 狄明信.矿物岩石学及沉积相简明教程.青岛:中国石油大学出版社, 2007:70. SHEN M D, DI M X. Brief tutorial of mineralogy petrology and sedimentary facies. Qingdao:China University of Petroleum Press, 2007:70. [5] 徐祖新, 韩淑敏, 王启超.中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义.岩性油气藏, 2015, 27(2):31-37. XU Z X, HAN S M, WANG Q C. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in middle Yangtze area. Lithologic Reservoirs, 2015, 27(2):31-37. [6] WILKIN R T, BARNES H L, BRANTLEY S L. The size distribution of framboidal pyrite in modern sediments:an indicator of redox conditions. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912. [7] TRIPATHI S C. Framboidal pyrite from Mussoorie phosphorite and its geological implication. Journal of Earth System Science, 1985, 94(3):315-321. [8] WILKIN R T, BARNES H L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta, 1996, 60(21):4167-4179. [9] 蔡春芳, 邬光辉, 李开开, 等.塔中地区古生界热化学硫酸盐还原作用与原油中硫的成因.矿物岩石地球化学通报, 2007, 26(1):44-48. CAI C F, WU G H, LI K K, et al. Thermochemical sulfate reduction and origin of sulfur in crude oil in Palaeozoic carbonates. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(1):44-48. [10] 李开开, 蔡春芳, 蔡镏璐, 等.塔河地区中下奥陶统储层硫化物成因分析.岩石学报, 2012, 28(3):806-814. LI K K, CAI C F, CAI L L, et al. Origin of sulfides in the Middle and Lower Ordovician carbonates in Tahe Oilfield, Tarim Basin. Acta Petrologica Sinica, 2012, 28(3):806-814. [11] 王晓洁, 张世奇, 魏孟吉, 等.东濮凹陷文东地区沙三段黄铁矿特征及形成模式.断块油气田, 2015, 22(2):178-183. WANG X J, ZHANG S Q, WEI M J, et al. Characteristics and formation mode of Es3member pyrite in Wendong area of Dongpu Depression. Fault-block Oil & Gas Field, 2015, 22(2):178-183. [12] ZHANG J, LIANG H D, HE X Q, et al. Sulfur isotopes of framboidal pyrite in the Permian-Triassic boundary clay at Meishan section. Acta Geologica Sinica(English Edition), 2011, 85(3):694-701. [13] BERNER R A. Sedimentary pyrite formation:an update. Geochimica et Cosmochimica Acta, 1984, 48(4):605-615. [14] BARNARD A S, RUSSO S P. Morphological stability of pyrite FeS2 nanocrystals in water. The Journal of Physical Chemistry C, 2009, 113(14):5376-5380. [15] 张美, 孙晓明, 芦阳, 等.南海台西南盆地自生管状黄铁矿矿物学特征及其对天然气水合物的示踪意义.矿床地质, 2011, 30(4):725-734. ZHANG M, SUN X M, LU Y, et al. Mineralogy of authigenic tube pyrite from the southwest Taiwan Basin of South China Sea and its tracing significance for gas hydrates. Mineral Deposits, 2011, 30(4):725-734. [16] 窦春霞, 唐新功, 向葵, 等.筇竹寺组和龙马溪组页岩弹性与复电阻率特性研究.岩性油气藏, 2016, 28(1):111-116. DOU C X, TANG X G, XIANG K, et al. Elastic and electrical properties of shales from Qiongzhusi and Longmaxi Formation. Lithologic Reservoirs, 2016, 28(1):111-116. [17] CLAVIER C, HEIM A, SCALA C. Effect of pyrite on resistivity and other logging measurements. SPWLA 17 th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, Denver, Colorado, 1976:1-34. [18] 肖芳锋, 侯贵廷, 王延欣, 等.准噶尔盆地及周缘二叠纪以来构造应力场解析.北京大学学报(自然科学版), 2010, 46(2):224-230. XIAO F F, HOU G T, WANG Y X, et al. Study on structural stress fields since Permian, Junggar Basin and adjacent area. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(2):224-230. [19] 徐兴友.准噶尔盆地车排子地区油气成藏期次研究.石油天然气学报(江汉石油学院学报), 2008, 30(3):40-44. XU X Y. Hydrocarbon entrapment of Chepaizi area in Junggar Basin. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute), 2008, 30(3):40-44. [20] 赵爱文, 王振奇, 李伟强.准噶尔盆地西北缘红车断裂带油气来源与成藏模式.西安石油大学学报(自然科学版), 2015, 30(5):16-22. ZHAO A W, WANG Z Q, LI W Q. Hydrocarbon sources and accumulation modes of Hongche fault zone in the northwestern margin of Junggar Basin. Journal of Xi' an Shiyou University (Natural Science Edition), 2015, 30(5):16-22. [21] 探测和分析黄铁矿对现代测井技术的影响.唐宇, 译.测井技术信息, 2005, 18(6):45-51. Detection and analysis of the pyrite effects on the modern welllogging technology. TANG Y, trans. Well Logging Technology Information, 2005, 18(6):45-51. [22] 吴胜和.储层表征与建模.北京:石油工业出版社, 2010. WU S H. Reservoir characterization & modeling. Beijing:Petroleum Industry Press, 2010. [23] 李宏, 黄建良, 陈剑, 等.车排子油田车60井区块J3q, K1q, 车35井区块J3q, J2 x, J1b, 车503、车峰19井区块N1s油藏新增石油探明储量.中国石油新疆油田分公司, 2011. LI H, HUANG J L, CHEN J, et al. New proven oil reserves of J3q and K1q in well Che 60 block, J3q, J2 x and J1b in well Che 35 block, well Che 503 and N1s in well Chefeng 19 block. PetroChina Xinjiang Oilfield Company, 2011. [24] 张冲, 张占松, 张超谟.基于等效岩石组分理论的渗透率解释模型.测井技术, 2014, 38(6):690-694. ZHANG C, ZHANG Z S, ZHANG C M. A permeability interpretation model based on equivalent rock elements theory. Well Logging Technology, 2014, 38(6):690-694. |
[1] | 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148. |
[2] | 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55. |
[3] | 周洪锋, 吴海红, 杨禹希, 向红英, 高吉宏, 贺昊文, 赵旭. 二连盆地巴音都兰凹陷B51井区白垩系阿四段扇三角洲前缘沉积特征[J]. 岩性油气藏, 2024, 36(4): 85-97. |
[4] | 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157. |
[5] | 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8. |
[6] | 宁从前, 周明顺, 成捷, 苏芮, 郝鹏, 王敏, 潘景丽. 二维核磁共振测井在砂砾岩储层流体识别中的应用[J]. 岩性油气藏, 2021, 33(1): 267-274. |
[7] | 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101. |
[8] | 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132. |
[9] | 山鑫杰, 王飞宇, 刘念, 冯伟平, 江涛, 杜喜, 程志强, 李思嘉, 李月. 二连盆地呼仁布其凹陷南洼下白垩统烃源岩分布特征与油源分析[J]. 岩性油气藏, 2020, 32(3): 104-114. |
[10] | 金秋月. 北部湾盆地涠西南凹陷东南斜坡原油成因类型及成藏特征[J]. 岩性油气藏, 2020, 32(1): 11-18. |
[11] | 张以明, 陈树光, 崔永谦, 田建章, 王鑫, 王孟华. 二连盆地乌兰花凹陷安山岩岩相展布及储层预测[J]. 岩性油气藏, 2018, 30(6): 1-9. |
[12] | 魏巍, 朱筱敏, 朱世发, 何明薇, 吴健平, 王名巍. 阿南凹陷腾格尔组凝灰质混积岩岩相及储集空间特征[J]. 岩性油气藏, 2017, 29(2): 68-76. |
[13] | 赵贤正, 王权, 淡伟宁, 王文英, 乔晓霞, 任春玲. 二连盆地白垩系地层岩性油藏的勘探发现及前景[J]. 岩性油气藏, 2017, 29(2): 1-9. |
[14] | 肖阳, 张少华, 魏岩, 杨明慧, 陈玉婷, 潘娟. 二连盆地赛汉塔拉凹陷边界断裂构造特征及其控藏作用[J]. 岩性油气藏, 2017, 29(2): 44-50. |
[15] | 赵志刚, 王飞宇, 王洪波, 王名巍, 王浩, 蓝宝峰. 二连盆地赛汉塔拉凹陷烃源岩有机相与烃源灶[J]. 岩性油气藏, 2017, 29(2): 28-35. |
|