岩性油气藏 ›› 2019, Vol. 31 ›› Issue (6): 109–117.doi: 10.12108/yxyqc.20190612

• 勘探技术 • 上一篇    下一篇

烃源岩总有机碳含量测井预测模型探讨——以陆丰凹陷文昌组为例

蒋德鑫, 姜正龙, 张贺, 杨舒越   

  1. 中国地质大学(北京)海洋学院, 北京 100083
  • 收稿日期:2019-06-11 修回日期:2019-08-02 出版日期:2019-11-21 发布日期:2019-09-28
  • 第一作者:蒋德鑫(1995-),男,中国地质大学(北京)在读硕士研究生,研究方向为海洋科学、含油气盆地分析。地址:(100083)北京市海淀区学院路29号中国地质大学(北京)海洋学院。Email:jiangdx@cugb.edu.cn。
  • 基金资助:
    十三五"国家重大科技专项子课题"珠一坳陷烃源岩发育及分布预测"(编号:CCL2018SZPS0351-001)和中国地质大学(北京)"发展基金"项目(编号:F13011)联合资助

Well logging prediction models of TOC content in source rocks: a case of Wenchang Formation in Lufeng Sag

JIANG Dexin, JIANG Zhenglong, ZHANG He, YANG Shuyue   

  1. School of Ocean Sciences, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2019-06-11 Revised:2019-08-02 Online:2019-11-21 Published:2019-09-28

摘要: 测井参数与烃源岩总有机碳(TOC)含量之间存在某种响应关系,可以利用测井参数对TOC进行预测。建立了陆丰凹陷文昌组烃源岩TOC和电阻率曲线、声波时差曲线、中子孔隙度曲线、自然伽马曲线和密度曲线之间的多元回归模型、BP神经网络模型和曲线叠合模型,探讨了3种模型对TOC预测效果的差异。结果表明,多元回归模型对陆丰凹陷文昌组半深湖亚相、三角洲前缘亚相烃源岩的TOC预测效果较好,对滨浅湖亚相的预测效果较差;BP神经网络模型比多元回归模型预测的效果好;曲线叠合模型预测效果较差。在实际应用中,BP神经网络模型适用于测井参数与TOC难以用显式函数表达,且有足够大数据量的地层;多元回归模型适用于测井参数与TOC有明显相关性的地层;曲线叠合模型适用于伽马曲线对黏土和有机质含量响应明显的地层,并且目标曲线在非烃源岩层能较好叠合。通过对以上模型的分析,可向该坳陷其他次级凹陷推广应用。

关键词: 总有机碳含量, 烃源岩, 多元回归模型, BP神经网络模型, 曲线叠合模型, 文昌组, 陆丰凹陷

Abstract: There is a certain response relationship between well logging parameters and total organic carbon (TOC)content of source rocks,so TOC content can be predicted by well logging parameters. The multi-variate regression model,BP artificial neural network model and curve overlapping model were established between TOC and conventional well log data,including resistivity log,acoustic log,neutron porosity log,gamma-ray log and density log of Wenchang Formation source rocks in Lufeng Sag. The differences of the three models in TOC prediction effect were discussed. The results show that the multi-variate regression model has better TOC prediction effect for semi-deep lake facies and delta front facies,but worse for shore-shallow lake facies. The prediction effect of BP artificial neural network model is better than that of multi-variate regression model,while the curve overlapping model has worse prediction effect. In practical application,the BP artificial neural network model is suitable for areas where logging parameters and TOC are difficult to express with explicit functions and have a large enough data volume,the multi-variate regression model is suitable for areas where logging parameters are significantly correlated with TOC,while the curve overlapping model is suitable for areas where gamma curve responds significantly to clay and organic matter content,and the target curve can be well superposed in non-hydrocarbon source rock beds. Through the analysis of the above models,it can be applied to other sub-sags in the depression.

Key words: TOC content, source rocks, multi-variate regression model, BP artificial neural network model, curve overlapping model, Wenchang Formation, Lufeng Sag

中图分类号: 

  • TE122.1+15
[1] 杨涛涛,范国章,吕福亮,等.烃源岩测井响应特征及识别评价方法. 天然气地球科学,2013,24(2):414-422. YANG T T,FAN G Z,LYU F L,et al. Logging response characteristics of hydrocarbon source rocks and identification and evaluation methods. Natural Gas Geoscience,2013,24(2):414422.
[2] 谭廷栋. 测井识别生油岩方法. 测井技术,1988,12(6):1-12. TAN T D. Logging recognition method for source rocks. Logging Technology,1988,12(6):1-12.
[3] 刘超. 测井资料评价烃源岩方法改进及作用. 大庆:东北石油大学,2011. LIU C. Improvement and role of well logging data in evaluating source rock method. Daqing:Northeast Petroleum University,2011.
[4] 徐新德,陶倩倩,曾少军,等. 基于地化-测井-地震联合反演的优质烃源岩研究方法及其应用:以涠西南凹陷为例.中国海上油气,2013,25(3):13-18. XU X D,TAO Q Q,ZENG S J,et al. High-quality source rock research method based on geochemical-logging-seismic joint inversion and its application:Take Weinan Sag as an example. China Offshore Oil and Gas,2013,25(3):13-18.
[5] 朱光有,金强. 利用测井信息评价烃源岩的地球化学特征. 地学前缘,2003,10(2):494. ZHU G Y,JIN Q. Evaluating geochemical characteristics of source rocks by logging information. Geoscience Frontiers, 2003,10(2):494.
[6] SCHMOKER J W. Determination of organic-matter content of Appalachian Devonian shales from Gamma-ray logs. AAPG Bulletin,1981,65(7):1295-1298.
[7] MEYER B L,NEDERLOF M H. Identification of source rocks on wireline logs by density/resistivity and sonic transit time/resistivity crossplots. AAPG Bulletin,1984,68(2):121-129.
[8] BEERS R F. Radioactivity and organic content of some Paleozoic shales. AAPG Bulletin,1945,29(1):1-22.
[9] 朱振宇,刘洪,李幼铭. ΔlogR技术在烃源岩识别中的应用与分析. 地球物理学进展,2003,18(4):647-649. ZHU Z Y,LIU H,LI Y M. Application and analysis of ΔlogR technology in source rock recognition. Progress in Geophysics, 2003,18(4):647-649.
[10] SCHMOKER J W. Determination of organic matter content of Appalachian Devonian shales from formation-density logs. AAPG Bulletin,1979,63(9):1504-1537.
[11] 徐思煌,朱义清. 烃源岩有机碳含量的测井响应特征与定量预测模型:以珠江口盆地文昌组烃源岩为例. 石油实验地质, 2010,32(3):290-295. XU S H,ZHU Y Q. Logging response characteristics and quantitative prediction model of organic carbon content in source rocks:a case study of Wenchang Formation source rocks in Pearl River Mouth Basin. Petroleum Geology and Experiment, 2010,32(3):290-295.
[12] 袁彩萍,徐思煌,薛罗. 珠江口盆地惠州凹陷主力烃源岩测井预测及评价. 石油实验地质,2014,36(1):110-116. YUAN C P,XU S H,XUE L. Logging prediction and evaluation of main source rocks in Huizhou Sag,Pearl River Mouth Basin. Petroleum Geology and Experiment,2014,36(1):110-116.
[13] 王俊瑞,梁力文,邓强,等. 基于多元回归模型重构测井曲线的方法研究及应用. 岩性油气藏,2016,28(3):113-120. WANG J R,LIANG L W,DENG Q,et al. Research and application of log reconstruction based on multiple regression model. Lithologic Reservoirs,2016,28(3):113-120.
[14] 刘超,印长海,卢双舫. 变系数ΔlogR烃源岩测井评价技术关键参数厘定方法及应用.天然气地球科学,2015,26(10):1925-1931. LIU C,YIN C H,LU S F. Determination and application of key parameters of variable coefficient ΔlogR hydrocarbon source rock logging evaluation technology. Natural Gas Geosciences, 2015,26(10):1925-1931.
[15] 刘跃杰,刘书强,马强,等. BP神经网络法在三塘湖盆地芦草沟组页岩岩相识别中的应用.岩性油气藏,2019,31(4):101-111. LIU Y J,LIU S Q,MA Q,et al. Application of BP neutral network method to identification of shale lithofacies of Lucaogou Formation in Santanghu Basin. Lithologic Reservoirs,2019,31(4):101-111.
[16] SHALABY M R,JUMAT N,LAI D,et al. Integrated TOC prediction and source rock characterization using machine learning,well logs and geochemical analysis:Case study from the Jurassic source rocks in Shams Field,NW Desert,Egypt. Journal of Petroleum Science and Engineering,2019,176:369-380.
[17] YANG W,GONG X X,PENG F F. Geophysical prediction technology based on organic carbon content in source rocks of the Huizhou Sag,the South China Sea. Polish Maritime Research,2017,24(Suppl 2):4-13.
[18] 刘军,汪瑞良,舒誉,等. 烃源岩TOC地球物理定量预测新技术及在珠江口盆地的应用. 成都理工大学学报(自然科学版),2012,39(4):415-419. LIU J,WANG R L,SHU Y,et al. New TOC geophysical quantitative prediction techniques for source rocks and their application in the Pearl River Mouth Basin. Journal of Chengdu University of Technology(Natural Science Edition),2012,39(4):415-419.
[19] 郑兆惠. 辽河滩海西部地区烃源岩测井识别. 北京:中国地质大学(北京),2009. ZHENG Z H. Source rock logging recognition in western Liaohe beach area. Beijing:China University of Geosciences(Beijing),2009.
[20] YU H,REZAEE R,WANG Z,et al. A new method for TOC estimation in tight shale gas reservoirs. International Journal of Coal Geology,2017,179:269-277.
[21] PASSEY Q R,CREANEY S,KULLA J B,et al. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin,1990,(12):1777-1794.
[22] ZHAO P Q,MAO Z Q,HUANG Z H,et al. A new method for estimating total organic carbon content from well logs. AAPG Bulletin,2016,100(8):1311-1327.
[23] 王贵文,朱振宇,朱广宇. 烃源岩测井识别与评价方法研究. 石油勘探与开发,2002,29(4):50-52. WANG G W,ZHU Z Y,ZHU G Y. Study on identification and evaluation method of hydrocarbon source rock logging. Petroleum Exploration and Development,2002,29(4):50-52.
[24] JOHNSON L M,REZAEE R,KADKHODAIE A,et al. Geochemical property modelling of a potential shale reservoir in the Canning Basin(Western Australia),using artificial neural networks and geostatistical tools. Computers & Geosciences, 2018,120:73-81.
[25] 施和生. 论油气资源不均匀分布与分带差异富集:以珠江口盆地珠一坳陷为例. 中国海上油气,2013,25(5):1-8. SHI H S. On the uneven distribution and zonal differential enrichment of oil and gas resources:Taking Zhuyi Depression of Pearl River Mouth Basin as an example. China Offshore Oil and Gas,2013,25(5):1-8.
[26] 胡小强,王晓龙,龚屹,等.珠一坳陷文昌组烃源岩发育特征及控制因素. 特种油气藏,2015,22(5):42. HU X Q,WANG X L,GONG Y,et al. Source rock development characteristics and controlling factors of Wenchang Formation in Zhuyi Depression. Special Oil And Gas Reservoirs, 2015,22(5):42.
[27] 芮志锋,林畅松,杜家元,等. 关键层序界面识别及其在岩性油气藏勘探中的意义:以惠州凹陷珠江组为例. 岩性油气藏, 2019,31(1):96-105. RUI Z F,LIN C S,DU J Y,et al. Key sequence surfaces identification and its significance in the exploration of lithologic reservoirs:a case of Zhujiang Formation in Huizhou Depression. Lithologic Reservoirs,2019,31(1):96-105.
[28] 陈锋,朱筱敏,葛家旺,等.珠江口盆地陆丰南地区文昌组层序地层及沉积体系研究. 岩性油气藏,2016,28(4):67-77. CHEN F,ZHU X M,GE J W,et al. Sequence stratigraphy and depositional systems of Wenchang Formation in the southern Lufeng area,Pearl River Mouth Basin. Lithologic Reservoirs, 2016,28(4):67-77.
[29] 李松峰. 少井条件下富生烃凹陷油气资源评价. 武汉:中国地质大学,2013. LI S F. Evaluation of hydrocarbon resources in hydrocarbonrich sags under the condition of few wells. Wuhan:China University of Geosciences,2013.
[30] WANG P,PENG S. A new scheme to improve the performance of artificial intelligence techniques for estimating Total Organic Carbon from well logs. Energies,2018,11(4):1-24.
[1] 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
[2] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[3] 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134.
[4] 王义凤, 田继先, 李剑, 乔桐, 刘成林, 张景坤, 沙威, 沈晓双. 玛湖凹陷西南地区二叠系油气藏相态类型及凝析油气地球化学特征[J]. 岩性油气藏, 2024, 36(6): 149-159.
[5] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[6] 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144.
[7] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[8] 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55.
[9] 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84.
[10] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[11] 朱康乐, 高岗, 杨光达, 张东伟, 张莉莉, 朱毅秀, 李婧. 辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J]. 岩性油气藏, 2024, 36(3): 146-157.
[12] 岑永静, 梁锋, 王立恩, 刘倩虞, 张鑫哲, 丁熊. 四川盆地蓬莱—中江地区震旦系灯影组二段成藏特征[J]. 岩性油气藏, 2024, 36(2): 89-98.
[13] 李二庭, 米巨磊, 张宇, 潘越扬, 迪丽达尔·肉孜, 王海静, 高秀伟. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征[J]. 岩性油气藏, 2024, 36(1): 88-97.
[14] 洪国良, 王红军, 祝厚勤, 白振华, 王雯雯. 南苏门答腊盆地J区块中新统Gumai组岩性油气藏成藏条件及有利区带[J]. 岩性油气藏, 2023, 35(6): 138-146.
[15] 刘海磊, 朱永才, 刘龙松, 尹鹤, 王学勇, 杜小弟. 准噶尔盆地阜康断裂带上盘二叠系芦草沟组页岩油地质特征及勘探潜力[J]. 岩性油气藏, 2023, 35(4): 90-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .