岩性油气藏 ›› 2023, Vol. 35 ›› Issue (3): 1–17.doi: 10.12108/yxyqc.20230301

• 地质勘探 • 上一篇    下一篇

柴西地区新生界湖相微生物碳酸盐岩岩相组合差异性及控制因素

王建功1,2, 李江涛3, 李翔1, 高妍芳1, 张平1, 孙秀建1, 白亚东1, 左洺滔1   

  1. 1. 中国石油勘探开发研究院 西北分院, 兰州 730020;
    2. 中国石油集团油藏描述重点实验室, 兰州 730020;
    3. 中国石油青海油田公司, 甘肃 敦煌 736200
  • 收稿日期:2022-08-14 修回日期:2022-09-26 出版日期:2023-05-01 发布日期:2023-04-25
  • 第一作者:王建功(1969—),男,博士,教授级高级工程师,主要从事沉积学、层序地层学和油气勘探等方面的研究。地址:(730020)甘肃省兰州市城关区雁儿湾路535号西地所。Email:wangjg@petrochina.com.cn。
  • 基金资助:
    国家自然科学基金 “柴达木盆地西部中新世混积岩对气候环境的双重重建”(编号: 42172169) 资助。

Differences and controlling factors of lithofacies assemblages of Cenozoic lacustrine microbial carbonate rocks in western Qaidam Basin

WANG Jiangong1,2, LI Jiangtao3, LI Xiang1, GAO Yanfang1, ZHANG Ping1, SUN Xiujian1, BAI Yadong1, ZUO Mingtao1   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China;
    2. Key Laboratory of Reservoir Description, CNPC, Lanzhou 730020, China;
    3. PetroChina Qinghai Oilfield Company, Dunhuang 736200, Gansu, China
  • Received:2022-08-14 Revised:2022-09-26 Online:2023-05-01 Published:2023-04-25

摘要: 利用大量露头和岩心薄片及分析化验资料,对柴达木盆地西部地区新生界咸化湖相微生物碳酸盐岩的岩石学特征、微观结构、岩相组合、沉积环境及其控制因素进行了研究。研究结果表明:①柴西地区微生物碳酸盐岩岩相组合受古地貌、沉积环境、陆源碎屑供给等因素影响,可分为扇控型和湖控型,扇控型主要发育在湖泊边缘的滨岸环境,分布范围大;湖控型多发育在盆缘斜坡区、断阶带及盆内浅水区,分布范围较小;古近系下干柴沟组上段主要发育扇控型,湖控型发育较局限,上述2类岩相组合在新近系下油砂山组均发育。②研究区不同岩相组合中微生物碳酸盐岩的类型与结构特征存在较大差异,扇控型微生物碳酸盐岩形成于湖侵时期,正旋回沉积为主,主要是凝块石,常叠置于厚层块状砂砾岩之上;微观结构以团块(凝块)、球粒及聚合粒为主;矿物成分以亮晶方解石为主。湖控型微生物碳酸盐岩在湖侵、湖退时期均可发育,正、反旋回沉积均发育,凝块石、叠层石及二者共生层均发育,规模相对较小,多与泥晶碳酸盐岩互层;微观结构更复杂,团块(凝块)、球粒及聚合粒和叠层结构均发育;矿物成分以方解石和白云石为主,含丰富的陆源碎屑、黏土矿物等,混积特征明显。③研究区扇控型微生物碳酸盐岩的形成主要受控于有机矿化作用和化学沉淀作用;湖控型微生物碳酸盐岩的形成则受控于有机矿化作用、化学沉淀作用以及物理沉积作用。

关键词: 扇控型, 湖控型, 混积, 微生物碳酸盐岩, 矿化作用, 岩相组合, 咸化湖泊, 新生界, 柴西地区

Abstract: Based on a large number of outcrops and core thin sections and analytical data,the petrological characteristics,microstructure,lithofacies assemblage,sedimentary environment and its controlling factors of Cenozoic saline lacustrine microbial carbonate rocks in western Qaidam Basin were studied. The results show that:(1)The lithofacies assemblage of microbial carbonate rocks in western Qaidam Basin can be divided into fan-controlled type and lake-controlled type due to the comprehensive influence of paleogeomorphology,sedimentary environment and terrigenous clastic supply. The fan-controlled lithofacies assemblage is mainly developed in the coastal environment at the edge of the lake,with large thickness and wide distribution,while the lake-controlled lithofacies assemblage is mainly developed in the basin margin slope area,fault terrace zone and shallow lakes in the basin, with small thickness and small distribution. The upper member of Paleogene Xiaganchaigou Formation is dominated by fan-controlled lithofacies assemblage,with relatively limited lake-controlled lithofacies assem-blage. Two types of lithofacies assemblages are developed in Neogene Xiayoushashan Formation.(2)The types and structural characteristics of microbial carbonate rocks in different lithofacies assemblages in the study area are quite different. Fan-controlled microbial carbonate rocks were formed in the lake transgression period. They were mainly deposited in a positive cycle,mainly consisting of thrombolites,and often stacked on thick massive glutenite. The microstructure is mainly composed of agglomerates(clots),spherules and aggregates,and the mineral composition is mainly sparry calcite. Lake-controlled microbial carbonate rocks can be developed during lake transgression and lake regression. Both positive and reverse cycle sediments are developed,and thrombolites,stromatolites and their symbiotic layers are developed,with relatively small scale,and most of them are inter-bedded with argillaceous carbonate rocks. The microstructure is more complex,and agglomerates(clots),pellets,aggregates and laminated structures are developed. The mineral composition is mainly calcite and dolomite,rich in terrigenous detritus and clay minerals,with obvious mixed sedimentation characteristics.(3)The formation of fan-controlled microbial carbonate rocks in the study area is mainly controlled by organic mineralization and chemical precipitation, while the formation of lake-controlled microbial carbonate rocks is affected by organic mineralization,chemical precipitation and physical sedimentation.

Key words: fan-controlled type, lake-controlled type, mixed sedimentation, microbial carbonates, mineralization, lithofacies assemblage, saline lake, Cenozoic, western Qaidam Basin

中图分类号: 

  • TE122.2
[1] CHIDSEY J, THOMAS C, MICHAEL D, et al. Petrography and characterization of microbial carbonates and associated facies from modern Great Salt Lake and Uinta Basin's Eocene Green River Formation in Utah, USA[J]. Geological Society, 2015, 418(1):261-286.
[2] DELLA P G. Carbonate build-ups in lacustrine, hydrothermal, and fluvial settings:Comparing depositional geometry, fabric types and geochemical signature[J]. Geological Society, 2015, 418(1):17-68.
[3] JAHNERT R J, COLLINS L B. Significance of subtidal microbial deposits in Shark Bay, Australia[J]. Marine Geology, 2011, 286:106-111.
[4] JAHNERT R J,COLLINS L B. Characteristics,distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia[J]. Marine Geology, 2012, 303:115-136.
[5] ARP G, REIMER A, REITNER J. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia[J]. Journal of Sedimentary Research, 2004, 73(2):105-127.
[6] 惠博,伊海生,时志强,等.青藏高原沱沱河盆地渐新世湖相叠层石:韵律纹层记录的古气候条件[J].地质通报, 2010, 29(1):62-69. HUI Bo, YI Haisheng, SHI Zhiqiang, et al. Oligocene lacustrine stromatolites in the Tuotuohe Basin, Qinghai-Tibet Plateau:Paleoclimate conditions recorded by the rhythmic laminations[J]. Geological Bulletin of China, 2010, 29(1):62-69.
[7] 曾德勇,时志强,张华,等.青藏高原五道梁地区中新世湖相叠层石特征、分类及古气候意义[J].矿物岩石, 2011, 31(3):111-119. ZENG Deyong, SHI Zhiqiang, ZHANG Hua, et al. Characters and classification of miocene lacustrine stromatolites in Wudaoliang area, northern Tibetan Plateau:Implications for paleoclimate[J]. Journal of Mineralogy and Petrology, 2011, 31(3):111-119.
[8] 王建功,张道伟,白亚东,等.柴西地区上油砂山组咸化湖沼沉积与微生物岩[J].地质学报, 2020, 94(11):3228-3248. WANG Jiangong, ZHANG Daowei, BAI Yadong, et al. Saline lacustrine palustrine sediments and microbialite in the Shangyoushashan Formation in the western Qaidam Basin[J]. Acta Geologica Sinica, 2020, 94(11):3228-3248.
[9] 曾令旗,伊海生,夏国清,等.柴达木盆地新生代湖相叠层石沉积序列及古环境意义[J].现代地质, 2017, 31(6):1251-1260. ZENG Lingqi, YI Haisheng, XIA Guoqing, et al. Sedimentary sequences and implications for paleoenvironment of Cenozoic lacustrine stromatolites in Qaidam Basin[J]. Geoscience, 2017, 31(6):1251-1260.
[10] 王建功,张道伟,易定红,等.柴西地区下干柴沟组上段湖相碳酸盐岩沉积特征及相模式[J].岩性油气藏, 2018, 30(4):1-13. WANG Jiangong, ZHANG Daowei, YI Dinghong, et al. Depositional characteristics and facies model of lacustrine carbonate rock in the upper member of lower Ganchaigou Formation in western Qaidam Basin[J]. Lithologic Reservoirs, 2018, 30(4):1-13.
[11] 王建功,杨少勇,李翔,等.柴达木盆地西部地区咸化湖泊微生物岩特征与差异分布[J].中国矿业大学学报, 2020, 49(6):1233-1249. WANG Jiangong, YANG Shaoyong, LI Xiang, et al. The characteristics and differential distribution of microbia carbonates of saline lacustrine in the western Qaidam Basin[J]. Journal of China University of Mining&Technology, 2020, 49(6):1233-1249.
[12] WANG Jiangong, ZHANG Daowei, YANG Shaoyong, et al. Sedimentary characteristics and genesis of the salt lake with the upper member of the Lower Ganchaigou formation from Yingxi Sag, Qaidam Basin[J]. Marine and Petroleum Geology, 2020, 111:135-155.
[13] 崔俊,毛建英,陈登钱,等.柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J].岩性油气藏, 2022, 34(2):45-53. CUI Jun, MAO Jianying, CHEN Dengqian, et al. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin[J]. Lithologic Reservoirs, 2022, 34(2):45-53.
[14] 李翔,王建功,李飞,等.柴达木盆地西部始新统湖相微生物岩沉积特征:以西岔沟和梁东地区下干柴沟组为例[J].岩性油气藏, 2021, 33(3):63-73. LI Xiang, WANG Jiangong, LI Fei, et al. Sedimentary characteristics of Eocene lacustrine microbialites in western Qaidam Basin:A case study from Xiaganchaigou Formation in Xichagou and Liangdong areas[J]. Lithologic Reservoirs, 2021, 33(3):63-73.
[15] 王建功,张道伟,石亚军,等.柴达木盆地西部地区渐新世下干柴沟组上段盐湖沉积特征[J].吉林大学学报(地球科学版), 2020, 50(2):442-453. WANG Jiangong, ZHANG Daowei, SHI Yajun, et al. Salt lake depositional characteristics of upper member of lower Ganchaigou Formation, western Qaidam Basin[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2):442-453.
[16] 王建功,张永庶,孙秀建,等.柴西地区新生界湖相碳酸盐颗粒结构多样性及成因[J].中国矿业大学学报, 2021, 50(6):1057-1075. WANG Jiangong, ZHANG Yongshu, SUN Xiujian, et al. Structural diversity and genesis of Cenozoic lacustrine carbonate particles in western Qaidam Basin[J]. Journal of China University of Mining&Technology, 2021, 50(6):1057-1075.
[17] 王建功,张道伟,袁剑英,等.英西湖相碳酸盐岩储层成因与含油性分析[J].中国矿业大学学报, 2019, 48(1):110-120. WANG Jiangong,ZHANG Daowei,YUAN Jianying,et al. Characteristics of reservoir genesis and oil-gas accumulation in lacustrine carbonate in Yingxi area of Qaidam Basin[J]. Journal of China University of Mining&Technology, 2019, 48(1):110-120.
[18] KNOLL A H, BAULD J. The evolution of ecological tolerance in prokaryotes[J]. Transactions of the Royal Society of Edinburgh, 1989, 80:209-223.
[19] GERDES G, THOMAS K, NOFFKE N. Microbial signatures in peritidal siliciclastic sediments:A catalogue[J]. Sedimentology, 2020, 47(2):279-308.
[20] BURNE R V, MOORE L S. Microbialites:Organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3):241-254.
[21] BURNE R. Microatoll microbialites of lake clifton, WesternAustralia-the Morphological Analogs of Cryptozoon Proliferum Hall, the first formally-named stromatolite-reply[J]. Facies, 1995, 32:257-257.
[22] RIDING R. Microbial carbonates:The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(1):179-214.
[23] RIDING R. Microbialites stromatolites, and thrombolite[M]// REITNER J, THIEL V. Encyclopedia of Geobiology:Encyclopedia of earth science series. Heidelberg:Springer, 2011:635-654.
[24] GERDES G, CLAES M, DUNAJTSCHIK-PIEWAK K, et al. Contribution of microbial mats to sedimentary surface structures[J]. Facies, 1993, 29(1):61-74.
[25] NOFFKE N. Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (lower Arenigian, Montagne Noire, France)[J]. Sedimentary Geology, 2000, 136:207-215.
[26] NOFFKE N, GISELA G, THOMAS K. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic)[J]. Earth Science Reviews, 2003, 62:163-176.
[27] NEU T R. Biofilms and microbial mats[M]// KRUMBEIN W E, PATERSON D M, STAL L J. Biostabilization of sediments:Bibliotheks-informations system. Oldenburg:Der Universit, 1994:9-16.
[28] WINGENDER J, NEU T R, FLEMMING H C. What are bacterial extracellular polymeric substances?In:Microbial extracellular polymeric substances[M]. Heidelberg:Springer, 1999:1-19.
[29] COHEN Y,ROSENBERG E. Microbial mats:Physiological ecology of benthic microbial communities[M]. Washington D C:American Society of Microbiologists, 1989:255-276.
[30] STOLZ J F. Structure of microbial mats and biofilms[M]// RIDING R, AWRAMIK S. Microbial Sediments. Heidelberg:Springer-Verlag, 2000:1-8.
[31] COSTERTON J W, CHENG K J, GEESEY G G, et al. Bacterial biofilms in nature and disease[J]. Annual Reviews of Microbiology, 1987, 41:435-464.
[32] FLEMMING H C, WUERTZ S. Bacteria and archaea on Earth and their abundance in biofilms[J]. Nature Reviews (Microbiology), 2019, 17:247-260.
[33] CHARACKLIS W G. Attached microbial growths:I. Attachment and growth[J]. Water Research, 1973, 7:1113-1127.
[34] GEESEY G G, JANG L K. Interactions between metal ions and capsular polymers[M]. New York:John Wiley, 1989:325-357.
[35] DADE W B, DAVIS J D, NICHOLS P D, et al. Effects of bacterial exopolymer adhesion on the entrainment of sand[J]. Geomicrobiology Journal, 1990, 8(1):1-16.
[36] CHARACKLIS W G, WILDERER P A. Structure and function of biofilms[R]. Berlin:Dahlem Workshop on Structure and Function of Biofilms, 1989.
[37] CHARAKLIS W G, MARSHALL K C. Biofilms[M]. Berlin:Wiley Intersci, 1990.
[38] GALLOIS A, BOSENCE D, BURGESS P M. Brackish to hypersaline facies in lacustrine carbonates:Purbeck limestone group, Upper Jurassic-Lower Cretaceous, Wessex Basin, Dorset, UK[J]. Facies, 2018, 64(2):1-39.
[39] DECHO A W. Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms[M]// RIDING R E, AWRAMIK S M. Microbial Sediments. Heidelberg:SpringerVerlag, 2000:9-15.
[40] MARSHALL K C. Bacterial adhesion in oligotrophic habitats[J]. Microbiological Sciences, 1985, 2(11):321-322.
[41] STARNAWSKI P, BATAILLON T, ETTEMA T J G, et al. Microbial community assembly and evolution in subseafloor sediment[J]. Proceedings of the National Academy of Sciences, 2017, 114(11):2940-2945.
[42] PARKES R J, WEBSTER G, CRAGG B A, et al. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time[J]. Nature, 2005, 436:390-394.
[43] MORONO Y, TERADA T, NISHIZAWA M, et al. Carbon and nitrogen assimilation in deep subseafloor microbial cells[J]. Proceedings of the National Academy of Sciences, 2011, 108(45):18295-18300.
[44] ORCUTT B N, LAROWE D E, BIDDLE J F, et al. Microbial activity in the marine deep biosphere:Progress and prospects[J]. Frontiers in Microbiology, 2013, 4(189):1-15.
[45] 戴永定,刘铁兵,沈继英.生物成矿作用与生物矿化作用[J].古生物学报, 1994, 33(5):575-592. DAI Yongding, LIU Tiebing, SHEN Jiying. Bio-ore formation and biomineralization[J]. Acta Palaeontologica Sinica, 1994, 33(5):575-592.
[46] SKINNER H C W, JAHREN A H. Treatise on geochemistry[M]. Amsterdam:Elsevier, 2003:117-184.
[47] 韩作振,陈吉涛,迟乃杰,等.微生物碳酸盐岩研究:回顾与展望[J].海洋地质与第四纪地质, 2009, 29(4):29-38. HAN Zuozhen, CHEN Jitao, CHI Naijie, et al. Microbial carbonates:A review and perspectives[J]. Marine Geology&Quaternary Geology, 2009, 29(4):29-38.
[48] 梅冥相.从生物矿化作用衍生出来的有机矿化作用:地球生物学框架下重要的研究主题[J].地质论评, 2012, 58(5):937-951. MEI Mingxiang. Organomineralization derived from the biomineralization:An important theme within the framework of geobiology[J]. Geological Review, 2012, 58(5):937-951.
[49] FOWLE D A, FEIN J B. Quantifying the effects of Bacillus subtilis cell walls on the precipitation of copper hydroxide from aqueous solution[J]. Geomicrobiology Journal, 2001, 18(1):77-91.
[50] GROTZINGER J P. Introduction to Precambrian reefs[G]// GELDSETZER H H J, JAMES N P, TEBBUTT G E. Reefs:Canada and adjacent areas. Calgary:Canadian Society of Petroleum Geologisits Memoir, 1989, 13:9-12.
[51] WEBB G E. Was phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)?[J]. Sedimentology, 1996, 43:947-971.
[52] DIAZ M R, EBERLI G P, BLACKWELDER P, et al. Microbially mediated organomineralization in the formation of ooids[J]. Geology, 2017, 45(9):771-774.
[53] MONTAGGIONI L F, CAMOIN G F. Stromatolites associated with coralgal communities in Holocene high-energy reefs[J]. Geology, 1993, 21:149-152.
[54] ZANKL H. The origin of high-Mg-calcite microbialites in cryptic habitats of Caribbean coral reefs-their dependence on light and turbulence[J]. Facies, 1993, 29:55-59.
[55] REITNER J. Modern cryptic microbial/metazoan facies from Lizard Island (Great Barrier Reef, Australia)-formation and concepts[J]. Facies, 1993, 29:3-39.
[56] CAMOIN G F, MONTAGGIONI L F. High energy coralgalstromatolite frameworks from Holocene reefs (Tahiti, French Polynesia)[J]. Sedimentology, 1994, 41:655-676.
[57] REITNER J, NEUWEILER F. GAUTRET P. Mud mounds:A polygenic spectrum of fine-grained carbonate buildups[J]. Facies, 1995, 32:1-70.
[58] MERZ M U. The biology of carbonate precipitation by cyanobacteria[J]. Facies, 1992, 26(1):81-101.
[59] MACINTYRE S. Vertical mixing in a shallow, eutrophic lake:Possible consequences for the light climate of phytoplankton[J]. Limnology and Oceanography. 1993, 38(4):798-817.
[60] JAMES N P. Reef environment[G]// SCHOLLE P A, BEBOUT D G,MOORE C H. Carbonate Depositional Environments. Oklahoma:American Association of Petroleum Geologists, 1983, 33:346-440.
[61] SHEEHAN P M. Reefs are not so different-they follow the evolutionary pattern of the level-bottom communities[J]. Geology, 1985, 13:46-49.
[62] TALENT J A. Organic reef-building:Episodes of extinction and symbiosis?[J]. Senck Lethaea, 1988, 69(3):315-368.
[63] KAUFFMAN E G, FAGERSTROM J A. The Phanerozoic evolution of reef diversity[M]//RICKLEFS R E, SCHLUTER D. Species diversity in ecological communities. Chicago:University of Chicago Press, 1993:315-329.
[64] FLÜGEL E,FLÜGEL-KAHLER E. Phanerozoic reef evolution:Basic questions and data base[J]. Facies, 1992, 26:167-278.
[65] TSIEN H H. Construction of reefs through geologic time with emphasis on the role of nonskeletal micro-organisms[J]. Acta Geologica Taiwanica, 1994, 31:1-30.
[66] WEBB G E. Late Mississippian thrombolite bioherms from the Pitkin Formation of northern Arkansas[J]. GSA Bulletin, 1987, 99:686-698.
[67] TURNER E C, NARBONNE G M, JAMES N P. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada[J]. Geology, 1993, 21:259-262.
[68] GERDES G, KRUMBEI W E. Biolaminated deposits[M]// BHATTACHARYA S, FRIEDMAN G M, NEUGEBAUER H J. Lecture notes in earth sciences. Berlin:Springer, 1987.
[69] GERDES G, KRUMBEIN W E, REINECK H E. Biolaminations-cological versus depositional dynamics[M]//EINSELE G, RICKEN W, SEILACHER A. Cycles and events in stratigraphy. Berlin:Springer, 1991:592-607.
[70] GERDES G, KLENKE T, NOFFKE N. Microbial signatures in peritidal siliciclastic sediments:A catalogue[J]. Sedimentology, 2000, 47:279-308.
[1] 周刚, 杨岱林, 孙奕婷, 严威, 张亚, 文华国, 和源, 刘四兵. 四川盆地及周缘寒武系沧浪铺组沉积充填过程及油气地质意义[J]. 岩性油气藏, 2024, 36(5): 25-34.
[2] 黄向胜, 闫琢玉, 张东峰, 黄合庭, 罗程飞. 琼东南盆地Ⅱ号断裂带新生界多期热流体活动与天然气运聚特征[J]. 岩性油气藏, 2024, 36(5): 67-76.
[3] 孙汉骁, 邢凤存, 谢武仁, 钱红杉. 四川盆地及周缘地区晚奥陶世岩相古地理演化[J]. 岩性油气藏, 2024, 36(1): 121-135.
[4] 姚秀田, 王超, 闫森, 王明鹏, 李婉. 渤海湾盆地沾化凹陷新生界断层精细表征及地质意义[J]. 岩性油气藏, 2023, 35(4): 50-60.
[5] 张振华, 张小军, 钟大康, 苟迎春, 张世铭. 柴达木盆地西北部南翼山地区古近系下干柴沟组上段储层特征及主控因素[J]. 岩性油气藏, 2023, 35(3): 29-39.
[6] 柳忠泉, 赵乐强, 曾治平, 田继军, 李正强, 罗锦昌, 胡美玲. 准噶尔盆地阜康断裂带二叠系芦草沟组页岩油成藏条件[J]. 岩性油气藏, 2023, 35(3): 126-137.
[7] 完颜泽, 龙国徽, 杨巍, 柴京超, 马新民, 唐丽, 赵健, 李海鹏. 柴达木盆地英雄岭地区古近系油气成藏过程及其演化特征[J]. 岩性油气藏, 2023, 35(2): 94-102.
[8] 曾治平, 柳忠泉, 赵乐强, 李艳丽, 王超, 高平. 准噶尔盆地西北缘哈山地区二叠系风城组页岩油储层特征及其控制因素[J]. 岩性油气藏, 2023, 35(1): 25-35.
[9] 龙国徽, 王艳清, 朱超, 夏志远, 赵健, 唐鹏程, 房永生, 李海鹏, 张娜, 刘健. 柴达木盆地英雄岭构造带油气成藏条件与有利勘探区带[J]. 岩性油气藏, 2021, 33(1): 145-160.
[10] 黄健玲, 傅强, 邱旭明, 赵世杰, 李林祥. 咸化断陷湖盆混积岩特征及沉积模式——以金湖凹陷阜二段为例[J]. 岩性油气藏, 2020, 32(2): 54-66.
[11] 魏巍, 朱筱敏, 朱世发, 何明薇, 吴健平, 王名巍. 阿南凹陷腾格尔组凝灰质混积岩岩相及储集空间特征[J]. 岩性油气藏, 2017, 29(2): 68-76.
[12] 陈登钱,沈晓双,崔 俊,路艳平,黄 耀. 柴达木盆地英西地区深部混积岩储层特征及控制因素[J]. 岩性油气藏, 2015, 27(5): 211-217.
[13] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .