岩性油气藏 ›› 2024, Vol. 36 ›› Issue (1): 178–184.doi: 10.12108/yxyqc.20240117

• 石油工程与油气田开发 • 上一篇    

中深层稠油水平井前置CO2蓄能压裂技术

杨兆臣1, 卢迎波1, 杨果1, 黄纯1, 弋大琳1, 贾嵩1, 吴永彬2, 王桂庆1   

  1. 1. 中国石油新疆油田公司 风城油田作业区, 新疆 克拉玛依 834000;
    2. 中国石油勘探开发研究院, 北京 100083
  • 收稿日期:2022-02-28 修回日期:2022-05-23 出版日期:2024-01-01 发布日期:2024-01-02
  • 第一作者:杨兆臣(1971-),男,硕士,高级工程师,主要从事稠油、超稠油开发实验及油藏工程方面的研究工作。地址:(834000)新疆克拉玛依市克拉玛依区胜利路62号。Email:bkqyzc@petrochina.com.cn。
  • 通信作者: 卢迎波(1988-),男,硕士,工程师,主要从事稠油、超稠油开发方面的研究工作。Email:fcluyb@petrochina.com.cn。
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”(编号:2016ZX05012)、中国石油股份有限公司重大专项“未动用稠油开采新技术研究”(编号:2019B-1411)、“新疆油田浅层稠油稳产提效技术研究与应用”(编号:2017E-0408)、“稠油提高采收率关键技术研究”(编号:2021DJ1403)联合资助。

Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil

YANG Zhaochen1, LU Yingbo1, YANG Guo1, HUANG Chun1, YI Dalin1, JIA Song1, WU Yongbin2, WANG Guiqing1   

  1. 1. Fengcheng Oilfield District, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    2. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
  • Received:2022-02-28 Revised:2022-05-23 Online:2024-01-01 Published:2024-01-02

摘要: 利用准噶尔盆地西北缘乌夏地区中深层稠油油藏参数,对水平井前置CO2蓄能压裂技术的开发机理、关键操作参数及开发效果进行了详细研究。研究结果表明: ①伴随压裂—焖井—生产等开发阶段的延伸,前置CO2蓄能压裂后的油井逐步显现出增能改造、扩散降黏、膨胀补能、释压成泡沫油流等特性,井底流压提高了2~4 MPa,CO2扩散至油藏的1/3,原油黏度降至500 mPa·s以下,泡沫油流明显; ②研究区最优压裂段间距为60 m、裂缝半长为90 m、裂缝导流能力为10 t/m,CO2最佳注入强度为1.5 m3/m,注入速度为1.8 m3/min,油井焖井时间为30 d,油藏采收率提高了2%~3%; ③通过与常规压裂生产效果进行对比,前置CO2蓄能压裂技术可使产油量提高5.2 t/d,预测CO2换油率达2.45,开发效果显著提升。

关键词: 中深层稠油, 水平井, 二氧化碳蓄能压裂, 低碳采油, 乌夏地区, 准噶尔盆地

Abstract: The development mechanism, key operating parameters and development effects of CO2 energy storage pre-fracturing technology for horizontal wells were studied by using the parameters of medium-deep heavy oil reservoirs in Wuxia area, northwestern margin of Junggar Basin. The results show that:(1) With the extension of development stages such as fracturing, soaking and production, the oil wells after pre-CO2 energy storage fracturing show the characteristics of energy increase, diffusion and viscosity reduction, expansion and energy supplement, and secondary foam oil displacement. The bottom hole flowing pressure increased by 2-4 MPa, the CO2 diffused to one third of the reservoir, the crude oil viscosity decreased to less than 500 mPa·s, and the foam oil flow was obvious.(2) The optimal fracturing interval in the study area is 60 m, the half length of the fracture is 90 m, the fracture conductivity is 10 t/m, the optimal CO2 injection intensity is 1.5 m3/m, the injection rate is 1.8 m3/min, the soaking time of oil wells is 30 d, and the oil reservoir recovery factor increases by 2%-3%.(3) Compared with conventional fracturing, the pre-CO2 energy storage fracturing can increase the production by 5.2 t/d, and the oil exchange rate of CO2 is predicted to be 2.45. The development effect was significantly improved.

Key words: medium-deep heavy oil, horizontal well, CO2 energy storage fracturing, low-carbon oil recovery, Wuxia area, Junggar Basin

中图分类号: 

  • TE345
[1] 王冲. 超深层稠油油藏压裂井CO2吞吐渗流机理研究[D].成都:西南石油大学, 2017. WANG Chong. Research on percolation mechanism in superdeep heavy oil reservoir with fractured well by CO2 huff and puff[D]. Chengdu:Southwest Petroleum University, 2017.
[2] 张娟, 周立发, 张晓辉, 等.浅薄层稠油油藏水平井CO2吞吐效果[J].新疆石油地质, 2018, 39(4):485-491. ZHANG Juan, ZHOU Lifa, ZHANG Xiaohui, et al. Effects of CO2 huff and puff in horizontal wells in shallow-burial thin heavy oil reservoirs[J]. Xinjiang Petroleum Geology, 2018, 39(4):485-491.
[3] 苏玉亮, 王程伟, 李蕾, 等.致密油藏CO2前置压裂流体相互作用机理[J].科学技术与工程, 2021, 21(8):3076-3081. SU Yuliang, WANG Chengwei, LI Lei, et al. Behacior of CO2 pre-fracturing fluid in tight reservoir[J]. Science Technology and Engineering, 2021, 21(8):3076-3081.
[4] 陈涛平, 赵斌, 贺如.特低渗透油层CO2与N2驱替方式[J].大庆石油地质与开发, 2018, 37(4):127-132. CHEN Taoping, ZHAO Bin, HE Ru. CO2 and N2 flooding methods in ultra-low permeability oil reservoir[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37(4):127-132.
[5] 卢迎波, 胡鹏程, 申婷婷, 等.电加热辅助蒸汽吞吐提高水平井水平段动用程度的技术[J].大庆石油地质与开发, 2022, 41(2):167-174. LU Yingbo, HU Pengcheng, SHEN Tingting, et al. Enhancing technique of horizontal section producing degree by electricalheating-assistant steam huff and puff for horizontal well[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(2):167-174.
[6] 马奎前, 刘东, 黄琴.渤海旅大油田新近系稠油油藏水平井蒸汽驱油物理模拟实验[J].岩性油气藏, 2022, 34(5):152-161. MA Kuiqian, LIU Dong, HUANG Qin. Physical simulation experiment of steam flooding in horizontal wells of Neogene heavy oil reservoir in Lvda oilfield,Bohai Sea[J]. Lithologic Reservoirs, 2022, 34(5):152-161.
[7] 王鹏涛, 吴向阳, 朱杰, 等.二氧化碳前置蓄能体积压裂优化设计[J].当代化工, 2021, 50(2):447-450. WANG Pengtao, WU Xiangyang, ZHU Jie, et al. Optimization design of volume fracturing with carbon dioxide pre-storage[J]. Contemporary Chemical Industry, 2021, 50(2):447-450.
[8] 罗成.CO2 准干法压裂技术研究及应用[J].石油与天然气化工, 2021, 50(2):83-87. LUO Cheng. Research and application of quasi-dry CO2 fracturing technology[J]. Chemical Engineering of Oil & Gas, 2021, 50(2):83-87.
[9] 丁勇, 马新星, 叶亮, 等.CO2 破岩机理及压裂工艺技术研究[J].岩性油气藏, 2018, 30(6):151-159. DING Yong, MA Xinxing, YE Liang, et al. Rock breaking mechanism of CO2 and fracturing technology[J]. Lithologic Reservoirs, 2018, 30(6):151-159.
[10] 赵睿, 桑林翔, 陈伦俊,等.直井辅助SAGD扩容及地质力学-热采耦合数值模拟[J].特种油气藏, 2021, 28(3):81-86. ZHAO Rui, SANG Linxiang, CHEN Lunjun, et al. Numerical simulation of SAGD expansion assisted by vertical well and coupled geomechanics-thermal recovery[J]. Special Oil & Gas Reservoirs, 2021, 28(3):81-86.
[11] 谢平, 侯光东, 韩静静.CO2 压裂技术在苏里格气田的应用[J].断块油气田, 2009, 16(5):104-106. XIE Ping, HOU Guangdong,HAN Jingjing. Application of CO2 fracturing technology in Sulige gas field[J]. Fault-Block Oil & Gas Field, 2009, 16(5):104-106.
[12] 孙小辉, 孙宝江, 王志远. 超临界CO2 压裂裂缝温度场模型[J].石油学报, 2015, 36(12):1587-1592. SUN Xiaohui,SUN Baojiang,WANG Zhiyuan. Fissure temperature field model of supercritical CO2 fracturing[J]. Acta Petrolei Sinica, 2015, 36(12):1587-1592.
[13] 陈立强, 田守嶒, 李根生, 等.超临界CO2压裂起裂压力模型与参数敏感性研究[J].岩土力学, 2015, 36(2):125-130. CHEN Liqiang, TIAN Shouzeng, LI Gensheng, et al. Initiation pressure models for supercritical CO2 fracturing and sensitivity analysis[J]. Rock and Soil Mechanics, 2015, 36(2):125-130.
[14] 卢迎波. 超稠油注气次生泡沫油生成机理及渗流特征[J].岩性油气藏, 2022, 34(6):152-159. LU Yingbo. Formation mechanism and percolation characteristics of secondary foamy oil by gas injection in super heavy oil[J]. Lithologic Reservoirs, 2022, 34(6):152-159.
[15] 熊钰, 王冲. 关于泡沫油黏度的若干问题[J]. 岩性油气藏, 2016, 28(4):1-8. XIONG Yu, WANG Chong. Several issues concerning foamy oil viscosity[J]. Lithologic Reservoirs, 2016, 28(4):1-8.
[16] 宋振云, 苏伟东, 杨延增, 等. CO2干法加砂压裂技术研究与实践[J].天然气工业, 2014, 34(6):55-59. SONG Zhenyun, SU Weidong, YANG Yanzeng, et al. Experimental studies of CO2/sand dry-frac process[J]. Natural Gas Industry, 2014, 34(6):55-59.
[17] 周瑞, 苏玉亮, 马兵, 等.随机分形体积压裂水平井CO2吞吐模拟[J].岩性油气藏, 2020, 32(1):161-168. ZHOU Rui, SU Yuliang, MA Bing, et al. CO2 huff and puff simulation in horizontal well with random fractal volume fracturing[J]. Lithologic Reservoirs, 2020, 32(1):161-168.
[18] LU Jiemin, NICOT J P, MICKLER P J, et al. Alteration of Bakken reservoir rock during CO2-based fracturing[J]. Journal of Unconventional Oil and Gas Resources, 2016, 14:72-85.
[19] FENG Yongcun, ARLANOGLU C, PODNOS E, et al. Finiteelement studies of hoop-stress enhancement for wellbore strengthening[J]. SPE Drilling & Completion, 2015, 30(1):38-51.
[20] FENG Yongcun,GRAY K E. A parametric study for wellbore strengthening[J]. Journal of Natural Gas Science and Engineering, 2016, 30:350-363.
[1] 余琪祥, 罗宇, 段铁军, 李勇, 宋在超, 韦庆亮. 准噶尔盆地环东道海子凹陷侏罗系煤层气成藏条件及勘探方向[J]. 岩性油气藏, 2024, 36(6): 45-55.
[2] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
[3] 白玉彬, 李梦瑶, 朱涛, 赵靖舟, 任海姣, 吴伟涛, 吴和源. 玛湖凹陷二叠系风城组烃源岩地球化学特征及页岩油“甜点”评价[J]. 岩性油气藏, 2024, 36(6): 110-121.
[4] 乔桐, 刘成林, 杨海波, 王义凤, 李剑, 田继先, 韩杨, 张景坤. 准噶尔盆地盆1井西凹陷侏罗系三工河组凝析气藏特征及成因机制[J]. 岩性油气藏, 2024, 36(6): 169-180.
[5] 杨海波, 冯德浩, 杨小艺, 郭文建, 韩杨, 苏加佳, 杨皩, 刘成林. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J]. 岩性油气藏, 2024, 36(5): 156-166.
[6] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[7] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[8] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[9] 王金铎, 曾治平, 徐冰冰, 李超, 刘德志, 范婕, 李松涛, 张增宝. 准噶尔盆地沙湾凹陷二叠系上乌尔禾组流体相态及油气藏类型[J]. 岩性油气藏, 2024, 36(1): 23-31.
[10] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[11] 尹路, 许多年, 乐幸福, 齐雯, 张继娟. 准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J]. 岩性油气藏, 2024, 36(1): 59-68.
[12] 李二庭, 米巨磊, 张宇, 潘越扬, 迪丽达尔·肉孜, 王海静, 高秀伟. 准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征[J]. 岩性油气藏, 2024, 36(1): 88-97.
[13] 周浩, 梁利侠. 水平井探测半径计算方法[J]. 岩性油气藏, 2024, 36(1): 157-168.
[14] 刘国勇, 许多年, 胡婷婷, 潘树新, 潘拓, 王国栋, 马永平, 关新. 准噶尔盆地沙湾凹陷侏罗系八道湾组滩砂的发现及石油地质意义[J]. 岩性油气藏, 2023, 35(5): 1-10.
[15] 潘树新, 许多年, 唐勇, 曲永强, 王国栋, 董雪梅, 胡婷婷, 马永平. 准噶尔盆地沙湾凹陷柳树沟河沉积体系的发现及其石油地质意义[J]. 岩性油气藏, 2023, 35(5): 26-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .