岩性油气藏 ›› 2024, Vol. 36 ›› Issue (1): 169–177.doi: 10.12108/yxyqc.20240116

• 石油工程与油气田开发 • 上一篇    下一篇

DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理

白佳佳1,2, 司双虎1, 陶磊1, 王国庆1, 王龙龙1, 史文洋1, 张娜3, 朱庆杰1   

  1. 1. 常州大学 石油与天然气工程学院, 江苏 常州 213164;
    2. 陕西省油气田特种增产技术重点实验室(西安石油大学), 西安 710065;
    3. 常州大学 石油化工学院, 江苏 常州 213164
  • 收稿日期:2022-10-29 修回日期:2022-12-09 出版日期:2024-01-01 发布日期:2024-01-02
  • 第一作者:白佳佳(1993-),男,博士,讲师,主要从事致密油气藏储层保护及提高采收率方面的教学与研究工作。地址:(213164)江苏省常州市武进区滆湖中路21号。Email:baijiajiaa@163.com。
  • 通信作者: 陶磊(1981-),男,博士,教授,主要从事油气增产与提高采收率方面的教学研究工作。Email:taolei2637@163.com。
  • 基金资助:
    陕西省油气田特种增产技术重点实验室开放基金项目“页岩渗吸压裂液对甲烷多尺度输运的增益机理研究”(编号:KFJJ-TZ-2022-3)资助。

Mechanism of DES+CTAB composite oil displacement agent system to improve oil recovery of low-permeability tight sandstone reservoirs

BAI Jiajia1,2, SI Shuanghu1, TAO Lei1, WANG Guoqing1, WANG Longlong1, SHI Wenyang1, ZHANG Na3, ZHU Qingjie1   

  1. 1. School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, Jiangsu, China;
    2. Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi'an Shiyou University, Xi'an 710065, China;
    3. School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
  • Received:2022-10-29 Revised:2022-12-09 Online:2024-01-01 Published:2024-01-02

摘要: 针对低渗致密油藏注水困难、采收率低等问题,利用尿素基深共晶溶剂(DES)与十六烷基三甲基溴化铵(CTAB)复配的驱油剂体系,对驱油剂在低渗致密油藏中的降压增注和提高采收率机理进行了研究。研究结果表明: ①驱油剂体系可以将油水界面张力降低至10-3 mN/m以下,大大提高了洗油效率; ②驱油剂体系可有效抑制黏土矿物水化,避免了低渗致密砂岩中黏土矿物水化膨胀带来的流体敏感性损害; ③驱油剂体系可对砂岩表面进行界面修饰,驱油剂溶液浸泡后样品的油相接触角由25.8°增加至61.4°,亲水性增强,亲油性减弱,有助于吸附在岩石孔隙壁面的油膜脱落; ④超前注入驱油剂的注入压力降低率平均为79.64%,采收率平均为50.96%,远大于常规水驱(一次注水→注驱油剂驱→二次注水)的采收率。

关键词: 低渗致密砂岩油藏, 尿素基深共晶溶剂(DES), 十六烷基三甲基溴化铵(CTAB), 水驱, 黏土矿物水化膨胀, 表面活性剂, 提高采收率

Abstract: Aiming at the problems of difficult water injection and low recovery in low-permeability tight reservoirs, an oil displacement agent composed of urea-based deep eutectic solvent(DES) and cetyltrimethylammonium bromide(CTAB) was developed to study the mechanism of reducing pressure and increasing injection and improving recovery in low-permeability tight sandstone reservoirs. The results show that:(1) The oil displacement agent system can reduce the oil-water interfacial tension to below 10-3 mN/m, which can greatly improve the oil washing efficiency.(2) The developed oil displacement agent has good clay mineral hydration inhibition, effectively avoiding the fluid sensitivity damage caused by the hydration expansion of clay minerals in low permeability tight sandstone.(3) The oil displacement agent system can modify the interface of sandstone surface. The oil phase contact angle of the samples after soaked by the oil displacement agent system increases from 25.8° to 61.4°, the hydrophilicity increases and the lipophilicity decreases, which contributes to the shedding of the oil film adsorbed on the rock surface.(4) The average reduction rate of injection pressure of advanced injection oil displacement agent is 79.64%, and the average recovery rate is 50.96%, which is much higher than the recovery rate of conventional water flooding(primary water injection→oil displacement agent injection→secondary water injection).

Key words: low-permeability tight sandstone reservoir, urea-based deep eutectic solvent, cetyltrimethylammonium bromide, water flooding, hydration expansion of clay minerals, surfactant, enhanced oil recovery

中图分类号: 

  • TE357
[1] 刘新, 安飞, 陈庆海, 等. 提高致密油藏原油采收率技术分析:以巴肯组致密油为例[J].大庆石油地质与开发, 2016, 35(6):164-169. LIU Xin, AN Fei, CHEN Qinghai, et al. Analysis of the EOR techniques for tight oil reservoirs:Taking Bakken-Formation as an example[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(6):164-169.
[2] 何贤, 闫建平, 王敏, 等. 低渗透砂岩孔隙结构与采油产能关系:以东营凹陷南坡F154区块为例[J].岩性油气藏, 2022, 34(1):106-117. HE Xian, YAN Jianping, WANG Min, et al. Relationship between pore structure and oil production capacity of low permeability sandstone:A case study of block F154 in south slope of Dongying Sag[J]. Lithologic Reservoirs, 2022, 34(1):106-117.
[3] 伏海蛟, 汤达祯, 许浩, 等. 致密砂岩储层特征及气藏成藏过程[J].断块油气田, 2012, 19(1):47-50. FU Haijiao, TANG Dazhen, XU Hao, et al. Characteristics of tight sandstone reservoir and accumlation process of gas pool[J]. Fault-Block Oil & Gas Field, 2012, 19(1):47-50.
[4] 程启贵.大型低渗透岩性油藏评价及开发技术[M].北京:石油工业出版社, 2015. CHENG Qigui. Evaluation and development techniques of large low permeability lithologic reservoirs[M]. Beijing:Petroleum Industry Press, 2015.
[5] 康毅力, 田键, 罗平亚, 等. 致密油藏提高采收率技术瓶颈与发展策略[J].石油学报, 2020, 41(4):467-477. KANG Yili, TIAN Jian, LUO Pingya, et al. Technical bottleneck and development strategy of enhancing recovery for tight reservoirs[J]. Acta Petrolei Sinica, 2020, 41(4):467-477.
[6] 宋明明, 韩淑乔, 董云鹏, 等. 致密砂岩储层微观水驱油效率及其主控因素[J].岩性油气藏, 2020, 32(1):135-143. SONG Mingming, HAN Shuqiao, DONG Yunpeng, et al. Microscopic water flooding efficiency and main controlling factors of tight sandstone reservoir[J]. Lithologic Reservoirs, 2020, 32(1):135-143.
[7] 苏皓, 雷征东, 张荻萩, 等. 致密油藏体积压裂水平井参数优化研究[J].岩性油气藏, 2018, 30(4):140-148. SU Hao, LEI Zhengdong, ZHANG Diqiu, et al. Volume fracturing parameters optimization of horizontal well in tight reservoir[J]. Lithologic Reservoirs, 2018, 30(4):140-148.
[8] 赵习森, 党海龙, 庞振宇, 等. 特低渗储层不同孔隙组合类型的微观孔隙结构及渗流特征:以甘谷驿油田唐157井区长6储层为例[J].岩性油气藏, 2017, 29(6):8-14. ZHAO Xisen, DANG Hailong, PANG Zhenyu, et al. Microscopic pore structure and seepage characteristics of different pore assemblage types in ultra low permeability reservoir:A case of Chang 6 reservoir in Tang 157 well area, Ganguyi Oilfield[J]. Lithologic Reservoirs, 2017, 29(6):8-14.
[9] 尚丹森, 侯吉瑞, 程婷婷. SiO2纳米流体在低渗透油藏中的驱油性能和注入参数优化[J].油田化学, 2021, 38(1):137-142. SHANG Dansen, HOU Jirui, CHENG Tingting. Flooding performance and optimization of injection parameters of SiO2 nanofluid in low permeability reservoirs[J]. Oilfield Chemistry, 2021, 38(1):137-142.
[10] 杨森, 舒政, 闫婷婷, 等. 超低界面张力强乳化复合驱油体系在低渗透油藏中的应用[J].断块油气田, 2021, 28(4):561-565. YANG Sen, SHU Zheng, YAN Tingting, et al. Application of ultralow interfacial tension and strong emulsion composite flooding system in low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2021, 28(4):561-565.
[11] 吴天江, 赵燕红, 程辰, 等. 纳米聚合物微球/表面活性剂复合调驱体系评价及应用[J].油田化学, 2022, 39(1):46-50. WU Tianjiang, ZHAO Yanhong, CHENG Chen, et al. Evaluation and application of polymer microsphere and surfactant compound profile control and flooding system[J]. Oilfield Chemistry, 2022, 39(1):46-50.
[12] 戴彩丽, 刘佳伟, 李琳, 等. 自生长水凝胶粒子特性及裂缝调控作用机理[J].石油学报, 2022, 43(6):840-848. DAI Caili, LIU Jiawei, LI Lin, et al. Characteristics and action mechanism of self-growing hydrogel particle fracture control system[J]. Acta Petrolei Sinica, 2022, 43(6):840-848.
[13] MOHSENZADEH A, AL-WAHAIBI Y, AL-HAJRI R, et al. Sequential deep eutectic solvent and steam injection for enhanced heavy oil recovery and in-situ upgrading[J]. Fuel, 2017, 187:417-428.
[14] SANATI A, RAHMANI S, NIKOO A H, et al. Comparative study of an acidic deep eutectic solvent and an ionic liquid as chemical agents for enhanced oil recovery[J]. Journal of Molecular Liquids, 2021, 329:115527.
[15] HADJ-KALI M K, AL-KHIDIR K E, WAZEER I, et al. Application of deep eutectic solvents and their individual constituents as surfactants for enhanced oil recovery[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 487:221-231.
[16] MOHSENZADEH A, AL-WAHAIBI Y, AL-HAJRI R, et al. Effects of concentration, salinity and injection scenario of ionic liquids analogue in heavy oil recovery enhancement[J]. Journal of Petroleum Science and Engineering, 2015, 133:114-122.
[17] 康毅力, 张杜杰, 游利军, 等. 塔里木盆地超深致密砂岩气藏储层流体敏感性评价[J].石油与天然气地质, 2018, 39(4):738-748. KANG Yili, ZHANG Dujie, YOU Lijun, et al. Fluid sensitivity evaluation of ultra-deep tight sandstone gas reservoirs, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(4):738-748.
[18] DELGADO-MELLADO N, LARRIBA M, NAVARRO P, et al. Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis[J]. Journal of Molecular Liquids, 2018, 260:37-43.
[19] 刘雪芬. 超低渗透砂岩油藏注水特性及提高采收率研究[D]. 成都:西南石油大学, 2015. LIU Xuefen. Water injection characteristics and enhanced oil recovery in ultra-low permeability sandstone reservoir[D]. Chengdu:Southwest Petroleum University, 2015.
[20] EL-HOSHOUDY A N, SOLIMAN F S, MANSOUR E M, et al. Experimental and theoretical investigation of quaternary ammoniumbased deep eutectic solvent for secondary water flooding[J]. Journal of Molecular Liquids, 2019, 294:111621.
[21] 刘雪芬, 康毅力, 罗平亚, 等. 氟化物对致密砂岩气体渗流能力的影响[J].石油学报, 2015, 36(8):995-1003. LIU Xuefen, KANG Yili, LUO Pingya, et al. Impact of fluoride on seepage ability of tight sandstone gas[J]. Acta Petrolei Sinica, 2015, 36(8):995-1003.
[22] 范彩伟, 胡林, 李明, 等.琼东南盆地深水区圈闭有效性评价方法及其应用[J].中国海上油气, 2021, 33(5):1-13. FAN Caiwei, HU Lin, LI Ming, et al. Evaluation method of trap effectiveness in deep water area of Qiongdongnan Basin and its application[J]. China Offshore Oil and Gas, 2021, 33(5):1-13.
[23] SANATI A, MALAYERI M R. CTAB adsorption onto dolomite in the presence of ionic liquid and deep eutectic solvent:Experimental and theoretical studies[J]. Journal of Molecular Liquids, 2021, 325:115176.
[24] BEG M, HAIDER M B, THAKUR N K, et al. Clay-water interaction inhibition using amine and glycol-based deep eutectic solvents for efficient drilling of shale formations[J]. Journal of Molecular Liquids, 2021, 340:117134.
[25] Al-RISHEQ D I M, NASSER M S, QIBLAWEY H, et al. Choline chloride based natural deep eutectic solvent for destabilization and separation of stable colloidal dispersions[J]. Separation and Purification Technology, 2021, 255:117737.
[26] 杨明任, 申辉林, 曲萨, 等.AdaBoost算法在致密砂岩水淹层识别中的应用[J].中国海上油气, 2021, 33(4):62-69. YANG Mingren, SHEN Huilin, QU Sa, et al. Application of AdaBoost algorithm in recognition of water flooded tight sandstone layer[J]. China Offshore Oil and Gas, 2021, 33(4):62-69.
[1] 苏皓, 郭艳东, 曹立迎, 喻宸, 崔书岳, 卢婷, 张云, 李俊超. 顺北油田断控缝洞型凝析气藏衰竭式开采特征及保压开采对策[J]. 岩性油气藏, 2024, 36(5): 178-188.
[2] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[3] 钱真, 毛志强, 郑伟, 黄远军, 陈立峰, 曾慧勇, 李岗, 宋嫒. 井间单套缝洞型油藏橡胶颗粒调剖堵水实验[J]. 岩性油气藏, 2023, 35(4): 161-168.
[4] 孟智强, 葛丽珍, 祝晓林, 王永平, 朱志强. 气顶边水油藏气/水驱产油量贡献评价方法[J]. 岩性油气藏, 2022, 34(5): 162-170.
[5] 宋传真, 马翠玉. 塔河油田奥陶系缝洞型油藏油水流动规律[J]. 岩性油气藏, 2022, 34(4): 150-158.
[6] 李传亮, 王凤兰, 杜庆龙, 由春梅, 单高军, 李斌会, 朱苏阳. 砂岩油藏特高含水期的水驱特征[J]. 岩性油气藏, 2021, 33(5): 163-171.
[7] 孙亮, 李保柱, 刘凡. 基于Pollock流线追踪的油藏高效水驱管理方法[J]. 岩性油气藏, 2021, 33(3): 169-176.
[8] 钱真, 李辉, 乔林, 柏森. 碳酸盐岩油藏低矿化度水驱作用机理实验[J]. 岩性油气藏, 2020, 32(3): 159-165.
[9] 杜旭林, 戴宗, 辛晶, 李海龙, 曹仁义, 罗东红. 强底水稠油油藏水平井三维水驱物理模拟实验[J]. 岩性油气藏, 2020, 32(2): 141-148.
[10] 邓成刚, 李江涛, 柴小颖, 陈汾君, 杨喜彦, 王海成, 连运晓, 涂加沙. 涩北气田弱水驱气藏水侵早期识别方法[J]. 岩性油气藏, 2020, 32(1): 128-134.
[11] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[12] 黄广庆. 离子组成及矿化度对低矿化度水驱采收率的影响[J]. 岩性油气藏, 2019, 31(5): 129-133.
[13] 贾红兵, 赵辉, 包志晶, 赵光杰, 毛伟, 李亚光. 水驱开发效果评价新方法及其矿场应用[J]. 岩性油气藏, 2019, 31(5): 101-107.
[14] 张志刚, 刘春杨, 刘国志. 低渗透油田储层连通关系动静态综合评价方法[J]. 岩性油气藏, 2019, 31(5): 108-113.
[15] 熊山, 王学生, 张遂, 赵涛, 庞菲, 高磊. WXS油藏长期水驱储层物性参数变化规律[J]. 岩性油气藏, 2019, 31(3): 120-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨占龙, 张正刚, 陈启林, 郭精义,沙雪梅, 刘文粟. 利用地震信息评价陆相盆地岩性圈闭的关键点分析[J]. 岩性油气藏, 2007, 19(4): 57 -63 .
[2] 方朝合, 王义凤, 郑德温, 葛稚新. 苏北盆地溱潼凹陷古近系烃源岩显微组分分析[J]. 岩性油气藏, 2007, 19(4): 87 -90 .
[3] 林承焰, 谭丽娟, 于翠玲. 论油气分布的不均一性(Ⅰ)———非均质控油理论的由来[J]. 岩性油气藏, 2007, 19(2): 16 -21 .
[4] 王天琦, 王建功, 梁苏娟, 沙雪梅. 松辽盆地徐家围子地区葡萄花油层精细勘探[J]. 岩性油气藏, 2007, 19(2): 22 -27 .
[5] 王西文,石兰亭,雍学善,杨午阳. 地震波阻抗反演方法研究[J]. 岩性油气藏, 2007, 19(3): 80 -88 .
[6] 何宗斌,倪 静,伍 东,李 勇,刘丽琼,台怀忠. 根据双TE 测井确定含烃饱和度[J]. 岩性油气藏, 2007, 19(3): 89 -92 .
[7] 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111 -113 .
[8] 陈斐,魏登峰,余小雷,吴少波. 鄂尔多斯盆地盐定地区三叠系延长组长2 油层组沉积相研究[J]. 岩性油气藏, 2010, 22(1): 43 -47 .
[9] 徐云霞,王山山,杨帅. 利用沃尔什变换提高地震资料信噪比[J]. 岩性油气藏, 2009, 21(3): 98 -100 .
[10] 李建明,史玲玲,汪立群,吴光大. 柴西南地区昆北断阶带基岩油藏储层特征分析[J]. 岩性油气藏, 2011, 23(2): 20 -23 .