岩性油气藏 ›› 2025, Vol. 37 ›› Issue (3): 1–12.doi: 10.12108/yxyqc.20250301

• 地质勘探 • 上一篇    

开鲁盆地陆东凹陷白垩系九佛堂组油气连续成藏条件

户昶昊1,2, 裴家学1, 蔡国钢1   

  1. 1. 中国石油辽河油田公司 勘探开发研究院, 辽宁 盘锦 124010;
    2. 中南大学 地球科学与信息物理学院, 长沙 410083
  • 收稿日期:2024-11-14 修回日期:2025-01-01 发布日期:2025-05-10
  • 第一作者:户昶昊(1979—),男,中南大学在读博士研究生,教授级高级工程师,主要从事油田勘探开发工作。地址:(124010)辽宁省盘锦市兴隆台区石油大街95号辽河油田勘探开发研究院。Email:huch6@petrochina.com.cn。
  • 基金资助:
    辽河油田重大科技专项“开鲁复杂低渗油藏增储上产关键技术研究”(编号:2024KJZX-06),新型油气勘探开发国家重大科技专项“渤海湾超级盆地油气富集规律与新领域勘探技术”(编号 2024ZD14001)联合资助。

Hydrocarbon continuous accumulation conditions of Cretaceous Jiufotang Formation in Ludong Sag,Kailu Basin

HU Changhao1,2, PEI Jiaxue1, CAI Guogang1   

  1. 1. Research Institute of Exploration and Development, PetroChina Liaohe Oilfield Company, Panjin 124010, Liaoning, China;
    2. School of Geosciences and Info-physics, Central South University, Changsha 410083, China
  • Received:2024-11-14 Revised:2025-01-01 Published:2025-05-10

摘要: 基于连续成藏理论,综合利用地震、钻井、录井、测井、岩心分析测试等资料,从构造沉积演化背景及其控制下的九佛堂组烃源岩、储层及成藏特征等多方面,对陆东凹陷九佛堂组油气成藏条件进行了系统研究,明确了连续成藏模式及勘探有利区。研究结果表明:①陆东凹陷为单断箕状凹陷,陡岸带为原始沉积的主物源供给区,缓坡带为晚期主抬升剥蚀区,现今构造保留了原沉积沉降中心主体部分;九佛堂组沉积受控凹断裂分期活动控制,在沉降速率低、水体相对浅的阶段,陡坡带发育大型扇三角洲,砂体呈“满洼充填”状态。②研究区九佛堂组发育九下段凝灰质泥岩和九上段Ⅰ—Ⅲ油组油页岩2套烃源岩,均为低成熟—成熟的好烃源岩,主力烃源岩为九上段Ⅰ—Ⅲ油组油页岩,其氯仿沥青“A”为0.48%,TOC为4.47%,总烃为2 377 mg/L,有机质类型以Ⅰ,Ⅱ1型为主,镜质体反射率为0.64%;扇三角洲前缘水下分流河道发育少量常规砂岩储层,致密砂岩储层广泛且连续分布,洼陷中心发育湖相碳酸盐岩储层;不同类型储层储集空间分层次发育,受物源供给与水体环境双重作用影响,粗粒砂岩粒间(溶)孔、细粒砂岩粒内溶孔、云质泥岩基质溶孔、碳酸盐岩溶蚀孔广泛发育;沙海组发育厚层暗色泥岩,可作区域盖层。③洼陷区源-储共生,保存条件优越,不同类型油藏连片发育,平面依次发育常规油-致密油-页岩油藏,纵向上多种类型叠置;后河扇体、交力格扇体取得了良好的勘探成效,库伦塔拉扇体、清河扇体是下步勘探有利区。

关键词: 控凹断裂, 沉降速率, 扇三角洲, 湖相碳酸盐岩, 非常规油气, 九佛堂组, 白垩系, 陆东凹陷, 开鲁盆地

Abstract: Based on the theory of continuous accumulation and the data of seismic,drilling ,master logging, well logging and core testing,the hydrocarbon accumulation conditions of Jiufotang Formation in Ludong Sag of Kailu Basin were studied from multiple aspects,including the tectonic sedimentary evolution background and its controlled source rocks,reservoirs,and reservoir characteristics of the Jiufotang Formation. The continuous accumulation patterns and favorable exploration targets in this area were clarified. The results show that:(1)Ludong Sag presents a single-fault half-graben configuration,where the steep slope zone serves as the main source supply area of the original sedimentary source,while the gentle slope zone is the main uplift and denudation area in the late stage,the main part of the original sedimentary subsidence center exists in current structure. The sedimentation of Jiufotang Formation is controlled by the staged activities of the sag-controlling fault. In the sedimentary stage with low sedimentation rate and relatively shallow water conditions,large fan deltas are developed in the steep slope zone,and the sand bodies are in the state of“pervasive sand distribution”.(2)Two source rock intervals are identified in Jiufotang Formation in the research area:tuffaceous mudstones in lower member of Jiufotang Formation and oil shales(Oil Groups Ⅰ-Ⅲ)in upper member of Jiufotang Formation,both of them are good source rocks with low maturity to maturity. The principal source rocks are the oil shales(Oil Groups Ⅰ- Ⅲ),with the chloroform bitumen‘A’of 0.48%,TOC of 4.47%,total hydrocarbon of 2 377 mg/L,organic matter type mainly consisting of type Ⅰ and Ⅱ1,and vitrinite reflectance of 0.64%. A small amount of conventional sandstone reservoirs are developed in the underwater distributary channel of the fan delta front. The tight sandstone reservoirs are widely and continuously distributed,and the lacustrine carbonate reservoirs are developed in the center of the subsag. Influenced by the effects of provenance supply and water environment,the storage space of different types of reservoirs develop sequentially. Intergranular(dissolved)pores in coarse sandstones, intragranular dissolved pores in fine sandstones,matrix dissolution pores in dolomitic mudstones,and carbonate dissolution pores are widely developed. Thick dark mudstone developed in Shahai Formation can be used as regional cap rock(. 3)The source-reservoir in the subsag area is integrated,and with superior preservation conditions. Different types of reservoirs are continuously developed. Conventional oil-tight oil-shale reservoirs are successively developed on the plane,and multiple types are superimposed vertically. Houhe and Jiaolige fan bodies have shown promising exploration results,while Kuluntala and Qinghe fan bodies are favorable areas for exploration.

Key words: sag-controlling fault, sedimentation rate, fan delta, lacustrine carbonate reservoirs, unconventional hydrocarbons, Jiufotang Formation, Cretaceous, Ludong Sag, Kailu Basin

中图分类号: 

  • TE122.1
[1] U.S. Geological Survey National Oil and Gas Resource Assessment Team. 1995 national assessment of United States oil and gas resources[R]. Washington:United States Government Printing Office,1995:20.
[2] GAUTIER D L,DOLTON G L,TAKAHASHI K I,et al. 1995 national assessment of United States oil and gas resources:Results, methodology,and supporting data[R]. Reston:U.S. Geological Survey,1995.
[3] SCHMOKER J W. Method for assessing continuous-type(unconventional)hydrocarbon accumulations[R]?GAUTIER D L,DOLTON G L,TAKAHASHI K I,et al. 1995 national assessment of United States oil and gas resources:results,methodology,and supporting data. Reston:U.S. Geological Survey, 1995.
[4] SCHMOKER J W. A resource evaluation of the Bakken Formation(Upper Devonian and Lower Mississippian)continuous oil accumulation,Williston Basin,North Dakota and Montana[J]. The Mountain Geologist,1996,33(1):1-10.
[5] SCHMOKER J W,FOUCH T D,CHARPENTIER R R. Gas in the Uinta Basin,Utah-resources in continuous accumulations[J]. The Mountain Geologist,1996,33(4):95-104.
[6] SCHMOKER J W. U.S. geological survey assessment concepts for continuous petroleum accumulations[R]?U. S. Geological Survey Uinta-Piceance Assessment Team. Petroleum systems and geologic assessment of oil and gas in Uinta-Piceance Province,Utah and Colorado. Reston:U.S. Geological Survey,2003.
[7] 邹才能,陶士振,袁选俊,等."连续型"油气藏及其在全球的重要性:成藏、分布与评价[J]. 石油勘探与开发,2009,36(6):669-682. ZOU Caineng,TAO Shizhen,YUAN Xuanjun,et al. Global importance of "continuous" petroleum reservoirs:Accumulation, distribution and evaluation[J]. Petroleum Exploration and Development,2009,36(6):669-682.
[8] 朱如凯,崔景伟,毛治国,等. 地层油气藏主要勘探进展及未来重点领域[J]. 岩性油气藏,2021,33(1):12-24. ZHU Rukai,CUI Jingwei,MAO Zhiguo,et al. Main exploration progress and future key fields of stratigraphic reservoirs[J]. Lithologic Reservoirs,2021,33(1):12-24.
[9] 牛成民,杜晓峰,王启明,等. 渤海海域新生界大型岩性油气藏形成条件及勘探方向[J]. 岩性油气藏,2022,34(3):1-14. NIU Chengmin,DU Xiaofeng,WANG Qiming,et al. Formation conditions and exploration direction of large-scale lithologic reservoirs of Cenozoic in Bohai Sea[J]. Lithologic Reservoirs,2022,34(3):1-14.
[10] 李晓光,刘兴周,李金鹏,等. 辽河坳陷大民屯凹陷沙四段湖相页岩油综合评价及勘探实践[J]. 中国石油勘探,2019,24(5):636-648. LI Xiaoguang,LIU Xingzhou,LI Jinpeng,et al. Comprehensive evaluation and exploration practice of Sha 4 lacustrine shale oil in Damintun Sag,Liaohe Depression[J]. China Petroleum Exploration,2019,24(5):636-648.
[11] 王乔,宋立新,韩亚杰,等. 辽河西部凹陷雷家地区古近系沙三段沉积体系及层序地层[J]. 岩性油气藏,2021,33(6):102-113. WANG Qiao,SONG Lixin,HAN Yajie,et al. Depositional system and sequence stratigraphy of the third member of Paleogene Shahejie Formation in Leijia area,Western Liaohe Depression[J]. Lithologic Reservoirs,2021,33(6):102-113.
[12] 赵会民,刘雪松,孟卫工,等. 曙光-雷家地区隐蔽油气藏及其成藏动力学特征[J]. 吉林大学学报(地球科学版),2011, 41(1):21-28. ZHAO Huimin,LIU Xuesong,MENG Weigong,et al. Formation and pool-forming dynamic properties of subtle reservoirs in Shuguang-Leijia area[J]. Journal of Jilin University:Earth Science Edition,2011,41(1):21-28.
[13] 殷敬红,雷安贵,方炳钟,等. 辽河外围中生代盆地"下洼找油气"理念[J]. 石油物探与开发,2008,35(1):6-10. YIN Jinghong,LEI Angui,FANG Bingzhong,et al. Concept of "seeking for oil and gas deep down depressions" in Liaohe peripheral Mesozoic basin[J]. Petroleum Exploration and Development,2008,35(1):6-10.
[14] 裴家学,方园. 陆西凹陷马北斜坡有效储层预测[J]. 石油天然气学报,2014,36(9):58-62. PEI Jiaxue,FANG Yuan. The prediction of effective reservoirs in Mabei Slope of Luxi Sag[J]. Journal of Oil and Gas Technology,2014,36(9):58-62.
[15] 裴家学. 宽方位地震资料在陆西凹陷勘探中的应用[J]. 大庆石油地质与开发,2015,34(5):146-150. PEI Jiaxue. Application of the wide azimuth seismic data in the exploration of Luxi Sag[J]. Petroleum Geology & Oilfield Development in Daqing,2015,34(5):146-150.
[16] 郭彦民,裴家学,赖鹏,等. 陆西凹陷特殊储层地震预测方法探讨[J]. 断块油气田,2016,23(4):451-454. GUO Yanmin,PEI Jiaxue,LAI Peng,et al. Seismic prediction of special reservoirs in Luxi Depression[J]. Fault-Block Oil & Gas Field,2016,23(4):451-454.
[17] 裴家学. 陆家堡凹陷火山活动与油气关系探讨[J]. 石油地质与工程,2015,29(2):1-4. PEI Jiaxue. Discussion on relationship between volcanic activity and hydrocarbon of Lujiapu Depression[J]. Petroleum Geo-logy & Engineering,2015,29(2):1-4.
[18] 张健,朱占平,孙雷,等. 松辽盆地外围西部上二叠统林西组岩相古地理特征[J]. 东北石油大学学报,2019,43(2):1-11. ZHANG Jian,ZHU Zhanping,SUN Lei,et al. Lithofacies paleogeography characteristics of Upper Permian Linxi Formation in the western periphery of Songliao Basin[J]. Journal of Northeast Petroleum University,2019,43(2):1-11.
[19] 苗安中,王晓奇,梁猛,等. 嫩江-八里罕断裂中段构造形迹及活动时代[J]. 东华理工大学学报(自然科学版),2019,42(3):209-219. MIAO Anzhong,WANG Xiaoqi,LIANG Meng,et al. Structural traces and active ages of the middle section of NenjiangBalihan Fault[J]. Journal of East China University of Technology(Natural Science),2019,42(3):209-219.
[20] 裴家学. 辽河外围盆地岩性油藏形成条件及识别[J]. 特种油气藏,2015,22(3):62-65. PEI Jiaxue. Forming conditions and identification of lithologic reservoirs in peripheral basin,Liaohe Oilfield[J]. Special Oil & Gas Reservoirs,2015,22(3):62-65.
[21] 芮志锋,林畅松,杜家元,等. 关键层序界面识别及其在岩性油气藏勘探中的意义:以惠州凹陷珠江组为例[J]. 岩性油气藏,2019,31(1):96-105. RUI Zhifeng,LIN Changsong,DU Jiayuan,et al. Key sequence surfaces identification and its significance in the exploration of lithologic reservoirs:A case of Zhujiang Formation in Huizhou Depression[J]. Lithologic Reservoirs,2019,31(1):96-105.
[22] 刘宗堡,李雪,郑荣华,等. 浅水三角洲前缘亚相储层沉积特征及沉积模式:以大庆长垣萨北油田北二区萨葡高油层为例[J]. 岩性油气藏,2022,34(1):1-13. LIU Zongbao,LI Xue,ZHENG Ronghua,et al. Sedimentary characteristics and models of shallow water delta front subfacies reservoirs:A case study of Sapugao oil layer in north-block of Sabei oilfield,Daqing placanticline[J]. Lithologic Reservoirs, 2022,34(1):1-13.
[23] 李威,李友川. 渤海海域渤中19-6构造带油气纵向连续分布形成机理研究[J]. 中国海上油气,2022,34(1):74-83. LI Wei,LI Youchuan. Study on formation mechanism of oil and gas longitudinal continuous distributionin of BZ19-6 structural belt,Bohai sea[J]. China Offshore Oil and Gas,2022,34(1):74-83.
[24] 付广,王宇鹏. 断裂密集带及附近下生上储式油气富集的控制因素[J]. 岩性油气藏,2018,30(2):23-29. FU Guang,WANG Yupeng. Controlling factors of hydrocarbon enrichment with the type of "below source and upper reservoir" in fault concentrated zones and nearby[J]. Lithologic Reservoirs,2018,30(2):23-29.
[25] 程浩,金振奎,余文端,等. 苏北盆地溱潼凹陷阜三段浅水三角洲沉积古地貌、古环境恢复[J]. 油气藏评价与开发,2023, 13(3):368-378. CHENG Hao,JIN Zhenkui,YU Wenduan,et al. Sedimentary palaeogeomorphology and palaeo-environment reconstruction of shallow water delta in the 3rd member of Funing Formation in Qintong Sag,Subei Basin[J]. Petroleum Reservoir Evaluation and Development,2023,13(3):368-378.
[26] 马正武,官大勇,王启明,等. 辽中凹陷古近系东三段湖底扇沉积特征及控制因素[J]. 岩性油气藏,2022,34(2):131-140. MA Zhengwu,GUAN Dayong,WANG Qiming,et al. Sedimentary characteristics and controlling factors of sublacustrine fans of the third member of Paleogene Dongying Formation in Liaozhong Sag[J]. Lithologic Reservoirs,2022,34(2):131-140.
[27] 张兴洲,郭冶,曾振,等. 东北地区中-新生代盆地群形成演化的动力学背景[J]. 地学前缘,2015,22(3):88-98. ZHANG Xingzhou,GUO Ye,ZENG Zhen,et al. Dynamic evolution of the Mesozoic-Cenozoic basins in the northeastern China[J]. Earth Science Frontiers,2015,22(3):88-98.
[28] 刘化清,刘宗堡,吴孔友,等. 岩性地层油气藏区带及圈闭评价技术研究新进展[J]. 岩性油气藏,2021,33(1):25-36. LIU Huaqing,LIU Zongbao,WU Kongyou,et al. New progress in study of play and trap evaluation technology for lithostratigraphic reservoirs[J]. Lithologic Reservoirs,2021,33(1):25-36.
[29] 张磊,李莎,罗波波,等. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏,2024,36(4):57-70. ZHANG Lei,LI Sha,LUO Bobo,et al. Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag[J]. Lithologic Reservoirs,2024,36(4):57-70.
[30] 李晓光,刘兴周. 辽河断陷连续型油气聚集特征及聚集模式研究[J]. 特种油气藏,2020,27(1):1-8. LI Xiaoguang,LIU Xingzhou. Continuous hydrocarbon accumulation properties and patterns in Liaohe Fault-Depression[J]. Special Oil & Gas Reservoirs,2020,27(1):1-8.
[1] 何星, 金玮, 张帆, 霍秋立, 李跃, 鲍俊驰, 刘璐, 曾庆兵. 海拉尔盆地乌尔逊凹陷白垩系铜钵庙组原油地球化学特征及来源[J]. 岩性油气藏, 2025, 37(1): 41-52.
[2] 陈红果, 张凤奇, 江青春, 刘红艳, 孙立东, 刘刚. 松辽盆地徐家围子断陷白垩系沙河子组超压形成机制及其演化特征[J]. 岩性油气藏, 2025, 37(1): 102-114.
[3] 卫欢, 单长安, 朱松柏, 黄钟新, 刘汉广, 朱兵, 吴长涛. 库车坳陷克深地区白垩系巴什基奇克组致密砂岩裂缝发育特征及地质意义[J]. 岩性油气藏, 2025, 37(1): 149-160.
[4] 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134.
[5] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[6] 王洪星, 韩诗文, 胡佳, 潘志浩. 松辽盆地德惠断陷白垩系火石岭组凝灰岩储层预测及成藏主控因素[J]. 岩性油气藏, 2024, 36(5): 35-45.
[7] 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34.
[8] 周洪锋, 吴海红, 杨禹希, 向红英, 高吉宏, 贺昊文, 赵旭. 二连盆地巴音都兰凹陷B51井区白垩系阿四段扇三角洲前缘沉积特征[J]. 岩性油气藏, 2024, 36(4): 85-97.
[9] 田亚, 李军辉, 陈方举, 李跃, 刘华晔, 邹越, 张晓扬. 海拉尔盆地中部断陷带下白垩统南屯组致密储层特征及有利区预测[J]. 岩性油气藏, 2024, 36(4): 136-146.
[10] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[11] 邵威, 周道容, 李建青, 章诚诚, 刘桃. 下扬子逆冲推覆构造后缘凹陷油气富集关键要素及有利勘探方向[J]. 岩性油气藏, 2024, 36(3): 61-71.
[12] 冯斌, 黄晓波, 何幼斌, 李华, 罗进雄, 李涛, 周晓光. 渤海湾盆地庙西北地区古近系沙河街组三段源-汇系统重建[J]. 岩性油气藏, 2024, 36(3): 84-95.
[13] 王天海, 许多年, 吴涛, 关新, 谢再波, 陶辉飞. 准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1): 98-110.
[14] 史卜庆, 丁梁波, 马宏霞, 孙辉, 张颖, 许小勇, 王红平, 范国章. 东非海域大型深水沉积体系及油气成藏特征[J]. 岩性油气藏, 2023, 35(6): 10-17.
[15] 马文杰, 王景春, 田作基, 马中振, 万学鹏, 林金逞, 许翔麟, 周玉冰. 南美洲Oriente盆地斜坡带W区块构造-岩性复合油藏成藏模式及有利区预测[J]. 岩性油气藏, 2023, 35(6): 29-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!