岩性油气藏 ›› 2015, Vol. 27 ›› Issue (2): 31–37.doi: 10.3969/j.issn.1673-8926.2015.02.006

• 油气地质 • 上一篇    下一篇

中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义

徐祖新1,韩淑敏2,王启超3   

  1.  1. 中国石油勘探开发研究院,北京 100083 ; 2. 中国石油集团东方地球物理勘探有限责任公司,河北 涿州 072750 ; 3. 中国石油大学(北京) 地球科学学院,北京 102249
  • 出版日期:2015-03-03 发布日期:2015-03-03
  • 作者简介:徐祖新( 1988- ),男,中国石油勘探开发研究院在读博士研究生,研究方向为非常规油气地质。 地址:( 100083 )北京市海淀区学院路 20号 910 信箱地质所 239 室。 E-mail : xuzuxin-20081234@163.com 。
  • 基金资助:

    中国石油重大科技专项“成熟探区油气分布规律与精细勘探技术研究”(编号: 2011D-07 )资助

Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in middle Yangtze area

X U Zuxin1, HAN Shumin2,WANG Qichao3   

  1.  1. PetroChina Research Institute of Petroleum Exploration & Development , Beijing 100083 , China ; 2. Bureau of Geophysics Prospecting Inc. , CNPC , Zhuozhou 072750 , Hebei , China ; 3. College of Geosciences , China University of Petrdeum , Beijing 102249 , China
  • Online:2015-03-03 Published:2015-03-03

摘要:

黄铁矿是富有机质沉积的特征矿物,是恢复沉积环境的重要指标,也可以指示页岩的含油气性。基于氩离子抛光-扫描电镜(Ar-SEM)技术获得陡山沱组页岩高分辨率扫描电镜图像,利用 ImageJ 软件统计和分析草莓状黄铁矿粒径大小,探讨黄铁矿含量和吸附气含量之间的关系。 结果表明:①陡山沱组页岩中草莓状黄铁矿粒径小,代表其经历了较长时间的静水缺氧沉积环境,对有机质的富集和保存均有利,为页岩气的形成提供了良好的沉积条件;②陡山沱组页岩储层中黄铁矿含量与吸附气含量呈正相关关系,根据黄铁矿的含量可以预测页岩吸附气;③铁含量越高越有利于有机质富集,而有机质含量的高低直接影响着页岩气的生成能力和赋存能力,根据平面上黄铁矿的富集程度可以预测页岩含气区。

关键词: 致密油, 渗透率, 大孔区间孔隙度, 长垣南地区, 松辽盆地

Abstract:

 Pyrite is a mineral with the deposition of abundant organic matter, and it is not only an important index to restore sedimentary environment, but also can indicate the characteristics of oil and gas in shale reservoirs. This paper used argon-ion polishing-scanning electron microscopy (Ar-SEM) techniques and ImageJ software to study grain size and hydrocarbon significance of shale reservoir of Doushantuo Formation in the Middle Yangtze area. The results show that:①the framboids pyrite in shale of Doushantuo Formation is of small particle size, showing a long anoxic sedimentary environment, which is better for the deposition and preservation of organic matter and provides good conditions for the formation of shale gas; ②the content of pyrite has positive correlation with the content of adsorbed gas in the shale of Doushantuo Formation, thus we can predicate adsorbed gas in shale according to the content of pyrite; ③iron is the necessary material for deposition of organic matter, high iron content is beneficial to the enrichment of organic matter, and the organic matter content influences the shale gas generation and storage capacity, so we can predicate maximum shale gas-bearing area according to the enrichment degree of pyrite.

Key words:  tight oil, permeability, big pore interval porosity, southern placanticline, Songliao Basin

[1]张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.

Zhang Jinchuan,Jin Zhijun,Yuan Mingsheng. Reservoiring mechanism of shale gas and its distribution[J]. Natural Gas Industry,2004, 24(7):15-18.

[2]霍凤斌,张涛,徐发,等.“两层·六端元”页岩评价方法在下扬子地区的应用[J].岩性油气藏,2013,25(3):87-91.

Huo Fengbin,Zhang Tao,Xu Fa, et al. Application of “two layer and six terminal element” shale evaluation method in Lower Yangtze area[J]. Lithologic Reservoirs,2013,25(3):87-91.

[3]熊镭,张超谟,张冲,等.A 地区页岩气储层总有机碳含量测井评价方法研究[J].岩性油气藏,2014,26(3):74-78.

Xiong Lei,Zhang Chaomo,Zhang Chong,et al. Research on logging evaluation method of TOC content of shale gas reservoir in A area [J]. Lithologic Reservoirs,2014,26(3):74-78.

[4]张小龙,张同伟,李艳芳,等.页岩气勘探和开发进展综述[J].岩性油气藏,2013,25(2):116-122.

Zhang Xiaolong,Zhang Tongwei,Li Yanfang, et al. Research advance in exploration and development of shale gas[J]. Lithologic Reservoirs, 2013,25(2):116-122.

[5]罗健,戴鸿鸣,邵隆坎,等.四川盆地下古生界页岩气资源前景预测[J].岩性油气藏,2012,24(4):70-74.

Luo Jian,Dai Hongming,Shao Longkan,et al. Prospect prediction for shale gas resources of the Lower Paleozoic in Sichuan Basin[J]. Lithologic Reservoirs,2012,24(4):70-74.

[6]郭秋麟,周长迁,陈宁生,等.非常规油气资源评价方法研究[J].岩性油气藏,2011,23(4):12-19.

Guo Qiulin,Zhou Changqian,Chen Ningsheng,et al. Evaluation methods for unconventional hydrocarbon resources[J]. Lithologic Reservoirs,2011,23(4):12-19.

[7]Guidry F K,Houston R,Walsh J W. Well Log Interpretation of a Devonian Gas Shale:An example analysis[R]. SPE 26932,1993: 393-394.

[8]Shelley B,Johnson B J,Fielder E O,et al. Data analysis of barnett shale completions[R]. SPE 100674, 2008.

[9]Lewis R,Ingraham D,Pearcy M,et al. New evaluation techniques for gas shale reservoirs[C]. Schlumberger:Reservoir Symposium, 2004:1-11.

[10]Grieser B,Halliburton J B. Identification of production potential in unconventional reservoirs[R]. SPE 106623,2007.

[11]王阳,陈洁,胡琳,等.沉积环境对页岩气储层的控制作用——— 以中下扬子区下寒武统筇竹寺组为例[J].煤炭学报,2013,38(5):845-850.

Wang Yang,Chen Jie,Hu Lin, et al. Sedimentary environment control on shale gas reservoir:A case study of Lower Cambrian Qiongzhusi Formation in the Middle Lower Yangtze area [J]. Journal of China Coal Society,2013,38(5):845-850.

[12]Loucks R G., Ruppel S C. Mississippian barnett shale:lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin,Texas[J]. AAPG Bulletin,2007,91(4): 579-601.

[13]吴勘,马强分,冯庆来.鄂西建始中二叠世孤峰组孔隙特征及页岩气勘探意义[J].地球科学——中国地质大学学报,2012,37(增刊 2):175-183.

Wu Kan,Ma Qiangfen,Feng Qinglai. Middle permian pore characteristics and shale gas exploration significance from the Gufeng Formation in Jianshi,Western Hubei[J]. Earth Science—Journal of China University of Geosciences,2012,37 (S2):175-179.

[14]Vergés E,Tost D,Ayala D,et al. 3D pore analysis of sedimentary rocks [J]. Sedimentary Geology,2011,234:109-115.

[15]常华进,储雪蕾.草莓状黄铁矿与古海洋环境恢复[J].地球科学进展,2011,26(5):475-481.

Chang Huajin,Chu Xuelei. Pyrite framboids and palaeo-ocean redox condition reconstruction[J]. Advances in Earth Science,2011,26 (5): 475-481.

[16]吴朝东.湘西震旦—寒武纪交替时期古海洋环境的恢复[J].地学前缘,2000,7(增刊 2):45-57.

Wu Zhaodong. Aancient marine environment during the recovery period of Sinian-Cambrian[J]. Earth Science Frontiers,2000,7(S2): 45-57.

[17]聂海宽, 张金川.页岩气聚集条件及含气量计算———以四川盆地及其周缘下古生界为例[J].地质学报,2012,86(2):349-361.

Nie Haikuan,Zhang Jinchuan. Shale gas accumulation conditions and gas content calculation:A case study of Sichuan basin and its periphery in the Lower Paleozoi[J]. Acta Geologica Sinica,2011,86 (2):349-361.

[18]邹才能,陶士振,侯连华,等.非常规油气地质[M].北京:地质出版社,2011:140-151.

Zou Caineng,Tao Shizhen,Hou Lianhua,et al. The unconventional oil and gas geology[M]. Beijing:Geology Press,2011:140-151.

[19]Canfield D,Raiswell R,Westrich J,et al. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales[J]. Chemical Geology,1986,51(1/2):149-155.

[20]Kaplan I R,Bird K J,Tailleur I L. Source of molten elemental sulfur and hydrogen sulfide from the Inigok well,northern Alaska[J]. AAPG Bulletin,2012,96(2):337-354.

[21]Berner R A,De Leeuw J W,Spiro B, et al. Sulphate reduction,organic matter decomposition and pyrite formation (and discussion)[J]. Philosophical Transactions of the Royal Society of London,1985, 315(1531):25-38.

[22]王韶华.中扬子震旦统油气藏特征及勘探潜力[D].武汉:中国地质大学,2010.

Wang Shaohua. Sinian gas reservoir characteristics and exploration potential of Middle Yangtze area [D]. Wuhan:China University of Geosciences,2010.

[23]陈一鸣,魏秀丽,徐欢.北美页岩气储层孔隙类型研究的启示[J].复杂油气藏,2012,5(4):19-22.

Chen Yiming,Wei Xiuli,Xu Huan. Suggestions from the research of pore types of shale gas reservoir in North America[J]. Complex Hydrocarbon Reservoirs,2012,5(4):19-22.

[24]李洪星,陆现彩,边立曾,等.草莓状黄铁矿微晶形态和成分的地质意义———以栖霞组含泥灰岩为例[J].矿物学报,2012,32(3):443-448.

Li Hongxing,Lu Xiancai,Bian Lizeng,et al. Geological significance of microcrystalline morphology and composition of framboids pyrite: A case study of marl of Chihsia Formation[J]. Acta Mineralogica Sinica,2012,32 (3):443-448.

[25]Love L G,Amstutz G C. Review of microscopic pyrite from the Devonian Chattanooga Shale and Rammelsberg Banderz[J]. Fortschrift Mineralogie,1966,43:273-309.

[26]Rickard D T. The origin of framboids[J]. Lithos,1970,3(3):269-293.

[27]Wilkin R T,Barnes H L,Brantley S L. The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta,1996,60(20):3897-3912.

[28]Zhou Chuanming,Jiang Shaoyong. Palaeoceano graphic redox environments for the lower Cambrian Hetang Formation in south China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence[J]. Palaeogeography Palaeoclimatology Palaeoecology,2009,271(3/4):279-286.

[29]杨雪英,龚一鸣.莓状黄铁矿:环境与生命的示踪计[J].地球科学———中国地质大学学报,2011,36(4):643-658.

Yang Xueying,Gong Yiming. Pyrite framboid:Indicator of environments and life[J]. Earth Science—Journal of China University of Geosciences, 2011,36(4):643-658.

[30]王银改. ImageJ 软件在检验医学图像分析处理中的应用[J].中华检验医学杂志,2005,28(7):747-748.

Wang Yingai. ImageJ software in medical image analysis processing of applications[J]. Chinese Journal of Laboratory Medicine,2005, 28 (7):747-748.

[31]王银改,王清改,翟素平.ImageJ 软件辅助分析在网织红细胞计数中的应用[J].临床检验杂志,2005,23(3):210-211.

Wang Yingai,Wang Qinggai,Zhai Suping. The application of ImageJ software in the red blood cell count[J]. Chinese Journal of Clinical Laboratory Scienc,2005,23(3):210-211.

[32]宋玉丹. ImageJ 在矿物初碎检测中的应用[D]. 太原:太原理工大学,2008.

Song Yudan. Study on the application of Image in the mineral[D].Taiyuan:Taiyuan University of Technology Master’s Thesis,2008.

[33]Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science,1998,298 (7):537-552.

[34]Loucks R G,Reed R M,Ruppel S C,et al. Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009,79:848-861.

[35]Curtis M E,Sondergeld C H,Ambrose R J,et al. Microstructural investigation of gas shales in two and three dimensions using nanometerscale resolution imaging[J]. AAPG Pulletin,2012,96(4):665-677.

[36]Shiley R H,Cluff R M,Dkerson D R, et al. Correlation of natural gas content to iron species in the New Albany shale group[J]. Fuel,1981.

60(8):732-738.
[1] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
[2] 王昌进, 张赛, 徐静磊. 基于渗透率修正因子的气体有效扩散系数分形模型[J]. 岩性油气藏, 2021, 33(3): 162-168.
[3] 王付勇, 杨坤. 致密油藏孔喉分布特征对渗吸驱油规律的影响[J]. 岩性油气藏, 2021, 33(2): 155-162.
[4] 符勇, 李忠诚, 万谱, 阙宜娟, 王振军, 吉雨, 黄礼, 罗静兰, 鲍志东. 三角洲前缘滑塌型重力流沉积特征及控制因素——以松辽盆地大安地区青一段为例[J]. 岩性油气藏, 2021, 33(1): 198-208.
[5] 曹思佳, 孙增玖, 党虎强, 曹帅, 刘冬民, 胡少华. 致密油薄砂体储层预测技术及应用实效——以松辽盆地敖南区块下白垩统泉头组为例[J]. 岩性油气藏, 2021, 33(1): 239-247.
[6] 袁选俊, 周红英, 张志杰, 王子野, 成大伟, 郭浩, 张友焱, 董文彤. 坳陷湖盆大型浅水三角洲沉积特征与生长模式[J]. 岩性油气藏, 2021, 33(1): 1-11.
[7] 梁志凯, 李卓, 李连霞, 姜振学, 刘冬冬, 高凤琳, 刘晓庆, 肖磊, 杨有东. 松辽盆地长岭断陷沙河子组页岩孔径多重分形特征与岩相的关系[J]. 岩性油气藏, 2020, 32(6): 22-35.
[8] 冯越, 黄志龙, 李天军, 张华, 李宏伟, 周亚东. 吐哈盆地胜北洼陷七克台组二段致密油成藏条件[J]. 岩性油气藏, 2020, 32(6): 97-108.
[9] 任杰. 碳酸盐岩裂缝性储层常规测井评价方法[J]. 岩性油气藏, 2020, 32(6): 129-137.
[10] 杨文杰, 胡明毅, 苏亚拉图, 刘昌, 元懿, 李金池. 松辽盆地苏家屯次洼初始裂陷期扇三角洲沉积特征[J]. 岩性油气藏, 2020, 32(4): 59-68.
[11] 程辉, 王付勇, 宰芸, 周树勋. 基于高压压汞和核磁共振的致密砂岩渗透率预测[J]. 岩性油气藏, 2020, 32(3): 122-132.
[12] 黄健玲, 傅强, 邱旭明, 赵世杰, 李林祥. 咸化断陷湖盆混积岩特征及沉积模式——以金湖凹陷阜二段为例[J]. 岩性油气藏, 2020, 32(2): 54-66.
[13] 郑玉飞, 李翔, 徐景亮, 郑伟杰, 于萌. 储层非均质性对自生CO2调驱效果的影响[J]. 岩性油气藏, 2020, 32(2): 122-128.
[14] 吴家洋, 吕正祥, 卿元华, 杨家静, 金涛. 致密油储层中自生绿泥石成因及其对物性的影响——以川中东北部沙溪庙组为例[J]. 岩性油气藏, 2020, 32(1): 76-85.
[15] 姬靖皓, 席家辉, 曾凤凰, 杨啟桂. 致密油藏分段多簇压裂水平井非稳态产能模型[J]. 岩性油气藏, 2019, 31(4): 157-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷红伟,高振中,王正允,王晓光. 一种独特的隐蔽油藏——夏9井区成岩圈闭油藏成因分析及其对勘探的启迪[J]. 岩性油气藏, 2008, 20(1): 8 -14 .
[2] 李国军, 郑荣才,唐玉林,汪洋,唐楷. 川东北地区飞仙关组层序- 岩相古地理特征[J]. 岩性油气藏, 2007, 19(4): 64 -70 .
[3] 蔡佳. 琼东南盆地长昌凹陷新近系三亚组沉积相[J]. 岩性油气藏, 2017, 29(5): 46 -54 .
[4] 章惠, 关达, 向雪梅, 陈勇. 川东北元坝东部须四段裂缝型致密砂岩储层预测[J]. 岩性油气藏, 2018, 30(1): 133 -139 .
[5] 付广,刘博,吕延防. 泥岩盖层对各种相态天然气封闭能力综合评价方法[J]. 岩性油气藏, 2008, 20(1): 21 -26 .
[6] 马中良,曾溅辉,张善文,王永诗,王洪玉,刘惠民. 砂岩透镜体油运移过程模拟及成藏主控因素分析[J]. 岩性油气藏, 2008, 20(1): 69 -74 .
[7] 王英民. 对层序地层学工业化应用中层序分级混乱问题的探讨[J]. 岩性油气藏, 2007, 19(1): 9 -15 .
[8] 卫平生, 潘树新, 王建功, 雷 明. 湖岸线和岩性地层油气藏的关系研究 —— 论“坳陷盆地湖岸线控油”[J]. 岩性油气藏, 2007, 19(1): 27 -31 .
[9] 易定红, 石兰亭, 贾义蓉. 吉尔嘎朗图凹陷宝饶洼槽阿尔善组层序地层与隐蔽油藏[J]. 岩性油气藏, 2007, 19(1): 68 -72 .
[10] 杨占龙, 彭立才, 陈启林, 郭精义, 李在光, 黄云峰. 吐哈盆地胜北洼陷岩性油气藏成藏条件与油气勘探方向[J]. 岩性油气藏, 2007, 19(1): 62 -67 .