岩性油气藏 ›› 2017, Vol. 29 ›› Issue (3): 152–158.doi: 10.3969/j.issn.1673-8926.2017.03.019

• 石油工程 • 上一篇    下一篇

针对A油田的抗温、抗盐聚合物/表面活性剂二元复合驱油体系研究

刘晨1,2, 王凯1,2, 王业飞3, 周文胜1,2   

  1. 1. 海洋石油高效开发国家重点实验室, 北京 100027;
    2. 中海油研究总院, 北京 100027;
    3. 中国石油大学(华东) 石油工程学院, 山东 青岛 266555
  • 收稿日期:2016-04-25 修回日期:2016-06-02 出版日期:2017-05-21 发布日期:2017-05-21
  • 作者简介:刘晨(1985-),男,硕士,工程师,主要从事油气田动态分析、提高采收率理论及技术等方面的研究工作。地址:(100027)北京市朝阳区太阳宫南街6号。Email:422810482@qq.com。
  • 基金资助:
    国家重大科技专项“海上稠油油田开发模式研究”(编号:2016ZX05025-001)资助

Polymer/surfactant binary flooding in A oilfield with high temperature and high salinity

LIU Chen1,2, WANG Kai1,2, WANG Yefei3, ZHOU Wensheng1,2   

  1. 1. State Key Laboratory of Offshore Oil Exploitation, Beijing 100027, China;
    2. CNOOC Research Institute, Beijing 100027, China;
    3. School of Petroleum Engineering, China University of Petroleum(East China), Qingdao 266555, Shandong, China
  • Received:2016-04-25 Revised:2016-06-02 Online:2017-05-21 Published:2017-05-21

摘要: 常规聚合物/表面活性剂二元复合驱的地层适应性差、耐温抗盐能力有限,难以满足低渗、高温、高盐油藏进一步提高采收率的需求。针对这一难题,优选梳形聚合物和非离子-阴离子型表面活性剂构建了一种适用于低渗、高温、高盐油藏的二元复合驱油体系,并通过室内实验,系统考察了二元复合驱油体系的黏度、油水界面张力、老化稳定性、吸附量、色谱分离程度以及提高采收率能力等性能。结果表明:二元复合驱油体系可降低油水界面张力至10-3 mN/m数量级,同时具有稳定的增黏能力和良好的老化稳定性;二元复合驱油体系的协同作用使聚合物和表面活性剂在油田净砂表面的饱和静态吸附量均低于单一体系,能将表面活性剂在地层中的超低界面张力有效作用距离由19%延伸到27%,此外,还存在较强的色谱分离效应。针对A油田提出的二元复合驱油体系0.4 PV(1 000 mg/L HF62208+0.3% NPAC)对水测渗透率为18.6~62.5 mD的天然岩心的采收率提高幅度达到11%以上,驱油效果优良。

关键词: 致密砂岩油藏, 可回收稠化水, 体积压裂, 长6油层组, 鄂尔多斯盆地

Abstract: Aiming at weak formation adaptability and limited temperature resistance of common polymer/surfactant system,which largely limits its application in low-permeability,high-temperature and high salinity reservoir, a binary flooding system was established based on the combination of polymer and anionic-nonionic surfactant. Through laboratory experiments,the performances of the binary flooding system were studied,such as viscosity, interfacial tension,aging stability,adsorption capacity,chromatographic fractionation effect and oil displacement efficiency. The results show that the interfacial tension between the system and the crude oil could be lowered to 10-3 mN/m while maintaining excellent stability. The saturated adsorption value of the binary flooding system is much lower than that of single system. Meanwhile,the effective distance of ultra-low interfacial ten-sion of surfactant extended from 19% to 27%. However,the chromatographic fractionation effect was not negligible. The binary flooding system,which is 0.4 PV (1 000 mg/L HF62208+0.3% NPAC),can increase oil recovery by 11% on natural core with permeability of 18.6-62.5 mD from A oilfield, indicating excellent EOR performance for low-permeability reservoirs.

Key words: tight sandstone reservoir, recyclable thickened water, volume fracturing, Chang 6 reservoir, Ordos Basin

中图分类号: 

  • TE357
[1] 王业飞, 刘晨, 齐自远, 等.低渗高温油藏聚合物驱研究.油田化学, 2013, 30(2):202-206. WANG Y F, LIU C, QI Z Y, et al. Polymer flooding in high temperature and low permeability reservoir. Oilfield Chemistry, 2013, 30(2):202-206.
[2] YOU Q, WANG K, TANG Y, et al. Study of a novel selfthickening polymer for improved oil recovery. Industrial & Engineering Chemistry Research, 2015, 54(40):9667-9674.
[3] WANG K, DAI C, ZHANG W, et al. Study on properties of hydrophobically associating polymer in high salinity reservoirs. Asian Journal of Chemistry, 2014, 26(18):6097-6104.
[4] 王辉辉, 沈之芹, 杨一青, 等.阴非离子型表面活性剂的合成及性能研究.化学世界, 2015,(6):356-360. WANG H H, SHEN Z Q, YANG Y Q, et al. Study on synthesis and properties of anionic-nonionic surfactants. Chemical World, 2015,(6):356-360.
[5] 油气田开发专业标准化委员会.表面及界面张力测定方法:SY/T 5370-1999.北京:中国标准出版社, 1999:1-10. Professional Standardization Committee of Oil and Gas Field Development. Measurement method for surface tension and interface tension:SY/T 5370-1999. Beijing:Chinese Standard Press, 1999:1-10.
[6] DAI C, WANG K, LIU Y, et al. Reutilization of fracturing flowback fluids in surfactant flooding for enhanced oil recovery. Energy & Fuels, 2015, 29(4):2304-2311.
[7] MANNE S, CLEVELAND J P, GAUB H E, et al. Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir, 1994, 10(12):4409-4413.
[8] 王业飞, 张丁涌, 乐小明.阴离子表面活性剂在油砂和净砂表面的吸附规律. 石油大学学报(自然科学版), 2002, 26(3):59-61. WANG Y F, ZHANG D Y, LE X M. Absorption of anionic surfactant on the surface of sandstone before and after solvent extraction. Journal of the University of Petroleum, 2002, 26(3):59-61.
[9] WANG K, LIU C, ZHOU W S, et al. Investigation on the interfacial properties of a viscoelastic-based surfactant as an oil displacement agent recovered from fracturing flowback fluid. Royal Society of Chemistry Advances. 2016, 6(2):38437-38446.
[10] DAI C, ZHAO J, YAN L. Adsorption behavior of cocamidopropyl betaine under conditions of high temperature and high salinity. Journal of Applied Polymer Science, 2014, 131(12):1-7.
[11] MOHAN K, GUPTA R, MOHANTY K K. Wettability altering secondary oil recovery in carbonate rocks. Energy & Fuels, 2011, 25(9):3966-3973.
[12] ZHAO J, DAI C, FANG J. Surface properties and adsorption behavior of cocamidopropyl dimethyl amine oxide under high temperature and high salinity conditions. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 450(3):93-98.
[13] 候吉瑞, 张淑芬, 杨锦宗, 等.复合驱过程中化学剂损失与超低界面张力有效作用距离.大连理工大学学报, 2005, 45(4):496-500. HOU J R, ZHANG S F, YANG J Z, et al. Chemical agent loss and effective distance of ultra-low IFT in ASP flooding. Journal of Dalian University of Technology, 2005, 45(4):496-500.
[14] 高振环, 王克亮, 徐典平, 等.三元复合驱油体系的色谱分离机理及其研究方法.大庆石油学院学报, 1999, 23(1):76-78. GAO Z H, WANG K L, XU D P, et al. Mechanism and research method of chromatographic separation of surfactant/alkaline/polymer flooding. Journal of Daqing Petroleum Institute, 1999, 23(1):76-78.
[15] 王克亮, 闫文华, 王天凤, 等.渗透率对三元复合体系色谱分离及驱油效果影响的实验研究.油田化学, 2000, 17(2):164-167. WANG K L, YAN W H, WANG T F, et al. Chromatographic separation of components in ASP flooding system and ITS oil displacing efficiency in relation to core permeability. Oilfield Chemistry, 2000, 17(2):164-167.
[16] SANG Q, LI Y, YU L. Enhanced oil recovery by branchedpreformed particle gel injection in parallel-sandpack models. Fuel, 2014, 105(5):295-306.
[17] PEI H H, ZHANG G C, GE J J. et al. Study on the variation of dynamic interfacial tension in the process of alkaline flooding for heavy oil. Fuel, 2013, 104(5):372-378.
[18] LASHKARBOLOOKI M,AYATOLLAHI S,RIAZI M. The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic-acidic crude oil reservoir during smart water injection. Journal of Chemical & Engineering Data, 2014, 59(11):3624-3634.
[19] DAI C L, ZHAO J H, YAN L P, et al. Adsorption behavior of cocamidopropyl betaine under conditions of high temperature and high salinity. Journal of Applied Polymer Science, 2014, 131(12):1-7.
[1] 徐宁宁, 王永诗, 张守鹏, 邱隆伟, 张向津, 林茹. 鄂尔多斯盆地大牛地气田二叠系盒1段储层特征及成岩圈闭[J]. 岩性油气藏, 2021, 33(4): 52-62.
[2] 李志远, 杨仁超, 张吉, 王一, 杨特波, 董亮. 天然气扩散散失率定量评价——以苏里格气田苏X区块为例[J]. 岩性油气藏, 2021, 33(4): 76-84.
[3] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[4] 姚海鹏, 于东方, 李玲, 林海涛. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
[5] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[6] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[7] 严敏, 赵靖舟, 曹青, 吴和源, 黄延昭. 鄂尔多斯盆地临兴地区二叠系石盒子组储层特征[J]. 岩性油气藏, 2021, 33(2): 49-58.
[8] 周新平, 邓秀芹, 李士祥, 左静, 张文选, 李涛涛, 廖永乐. 鄂尔多斯盆地延长组下组合地层水特征及其油气地质意义[J]. 岩性油气藏, 2021, 33(1): 109-120.
[9] 高计县, 孙文举, 吴鹏, 段长江. 鄂尔多斯盆地东北缘神府区块上古生界致密砂岩成藏特征[J]. 岩性油气藏, 2021, 33(1): 121-130.
[10] 曹江骏, 陈朝兵, 罗静兰, 王茜. 自生黏土矿物对深水致密砂岩储层微观非均质性的影响——以鄂尔多斯盆地西南部合水地区长6油层组为例[J]. 岩性油气藏, 2020, 32(6): 36-49.
[11] 何维领, 罗顺社, 李昱东, 吴悠, 吕奇奇, 席明利. 斜坡背景下沉积物变形构造时空展布规律——以鄂尔多斯盆地镇原地区长7油层组为例[J]. 岩性油气藏, 2020, 32(6): 62-72.
[12] 刘博, 徐刚, 纪拥军, 魏路路, 梁雪莉, 何金玉. 页岩油水平井体积压裂及微地震监测技术实践[J]. 岩性油气藏, 2020, 32(6): 172-180.
[13] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
[14] 王继伟, 朱玉双, 饶欣久, 周树勋, 吴英强, 杨红梅. 鄂尔多斯盆地胡尖山地区长61致密砂岩储层成岩特征与孔隙度定量恢复[J]. 岩性油气藏, 2020, 32(3): 34-43.
[15] 刘俞佐, 石万忠, 刘凯, 王任, 吴睿. 鄂尔多斯盆地杭锦旗东部地区上古生界天然气成藏模式[J]. 岩性油气藏, 2020, 32(3): 56-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏钦廉, 郑荣才, 肖玲, 王成玉, 牛小兵. 鄂尔多斯盆地吴旗地区长6 储层特征及影响因素分析[J]. 岩性油气藏, 2007, 19(4): 45 -50 .
[2] 王东琪, 殷代印. 水驱油藏相对渗透率曲线经验公式研究[J]. 岩性油气藏, 2017, 29(3): 159 -164 .
[3] 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27 -32 .
[4] 蒋韧,樊太亮,徐守礼. 地震地貌学概念与分析技术[J]. 岩性油气藏, 2008, 20(1): 33 -38 .
[5] 邹明亮,黄思静,胡作维,冯文立,刘昊年. 西湖凹陷平湖组砂岩中碳酸盐胶结物形成机制及其对储层质量的影响[J]. 岩性油气藏, 2008, 20(1): 47 -52 .
[6] 王冰洁,何生,倪军娥,方度. 板桥凹陷钱圈地区主干断裂活动性分析[J]. 岩性油气藏, 2008, 20(1): 75 -82 .
[7] 陈振标,张超谟,张占松,令狐松,孙宝佃. 利用NMRT2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1): 105 -110 .
[8] 张厚福,徐兆辉. 从油气藏研究的历史论地层-岩性油气藏勘探[J]. 岩性油气藏, 2008, 20(1): 114 -123 .
[9] 张 霞. 勘探创造力的培养[J]. 岩性油气藏, 2007, 19(1): 16 -20 .
[10] 杨午阳, 杨文采, 刘全新, 王西文. 三维F-X域粘弹性波动方程保幅偏移方法[J]. 岩性油气藏, 2007, 19(1): 86 -91 .