岩性油气藏 ›› 2017, Vol. 29 ›› Issue (3): 152158.doi: 10.3969/j.issn.1673-8926.2017.03.019
刘晨1,2, 王凯1,2, 王业飞3, 周文胜1,2
LIU Chen1,2, WANG Kai1,2, WANG Yefei3, ZHOU Wensheng1,2
摘要: 常规聚合物/表面活性剂二元复合驱的地层适应性差、耐温抗盐能力有限,难以满足低渗、高温、高盐油藏进一步提高采收率的需求。针对这一难题,优选梳形聚合物和非离子-阴离子型表面活性剂构建了一种适用于低渗、高温、高盐油藏的二元复合驱油体系,并通过室内实验,系统考察了二元复合驱油体系的黏度、油水界面张力、老化稳定性、吸附量、色谱分离程度以及提高采收率能力等性能。结果表明:二元复合驱油体系可降低油水界面张力至10-3 mN/m数量级,同时具有稳定的增黏能力和良好的老化稳定性;二元复合驱油体系的协同作用使聚合物和表面活性剂在油田净砂表面的饱和静态吸附量均低于单一体系,能将表面活性剂在地层中的超低界面张力有效作用距离由19%延伸到27%,此外,还存在较强的色谱分离效应。针对A油田提出的二元复合驱油体系0.4 PV(1 000 mg/L HF62208+0.3% NPAC)对水测渗透率为18.6~62.5 mD的天然岩心的采收率提高幅度达到11%以上,驱油效果优良。
中图分类号:
[1] 王业飞, 刘晨, 齐自远, 等.低渗高温油藏聚合物驱研究.油田化学, 2013, 30(2):202-206. WANG Y F, LIU C, QI Z Y, et al. Polymer flooding in high temperature and low permeability reservoir. Oilfield Chemistry, 2013, 30(2):202-206. [2] YOU Q, WANG K, TANG Y, et al. Study of a novel selfthickening polymer for improved oil recovery. Industrial & Engineering Chemistry Research, 2015, 54(40):9667-9674. [3] WANG K, DAI C, ZHANG W, et al. Study on properties of hydrophobically associating polymer in high salinity reservoirs. Asian Journal of Chemistry, 2014, 26(18):6097-6104. [4] 王辉辉, 沈之芹, 杨一青, 等.阴非离子型表面活性剂的合成及性能研究.化学世界, 2015,(6):356-360. WANG H H, SHEN Z Q, YANG Y Q, et al. Study on synthesis and properties of anionic-nonionic surfactants. Chemical World, 2015,(6):356-360. [5] 油气田开发专业标准化委员会.表面及界面张力测定方法:SY/T 5370-1999.北京:中国标准出版社, 1999:1-10. Professional Standardization Committee of Oil and Gas Field Development. Measurement method for surface tension and interface tension:SY/T 5370-1999. Beijing:Chinese Standard Press, 1999:1-10. [6] DAI C, WANG K, LIU Y, et al. Reutilization of fracturing flowback fluids in surfactant flooding for enhanced oil recovery. Energy & Fuels, 2015, 29(4):2304-2311. [7] MANNE S, CLEVELAND J P, GAUB H E, et al. Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir, 1994, 10(12):4409-4413. [8] 王业飞, 张丁涌, 乐小明.阴离子表面活性剂在油砂和净砂表面的吸附规律. 石油大学学报(自然科学版), 2002, 26(3):59-61. WANG Y F, ZHANG D Y, LE X M. Absorption of anionic surfactant on the surface of sandstone before and after solvent extraction. Journal of the University of Petroleum, 2002, 26(3):59-61. [9] WANG K, LIU C, ZHOU W S, et al. Investigation on the interfacial properties of a viscoelastic-based surfactant as an oil displacement agent recovered from fracturing flowback fluid. Royal Society of Chemistry Advances. 2016, 6(2):38437-38446. [10] DAI C, ZHAO J, YAN L. Adsorption behavior of cocamidopropyl betaine under conditions of high temperature and high salinity. Journal of Applied Polymer Science, 2014, 131(12):1-7. [11] MOHAN K, GUPTA R, MOHANTY K K. Wettability altering secondary oil recovery in carbonate rocks. Energy & Fuels, 2011, 25(9):3966-3973. [12] ZHAO J, DAI C, FANG J. Surface properties and adsorption behavior of cocamidopropyl dimethyl amine oxide under high temperature and high salinity conditions. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 450(3):93-98. [13] 候吉瑞, 张淑芬, 杨锦宗, 等.复合驱过程中化学剂损失与超低界面张力有效作用距离.大连理工大学学报, 2005, 45(4):496-500. HOU J R, ZHANG S F, YANG J Z, et al. Chemical agent loss and effective distance of ultra-low IFT in ASP flooding. Journal of Dalian University of Technology, 2005, 45(4):496-500. [14] 高振环, 王克亮, 徐典平, 等.三元复合驱油体系的色谱分离机理及其研究方法.大庆石油学院学报, 1999, 23(1):76-78. GAO Z H, WANG K L, XU D P, et al. Mechanism and research method of chromatographic separation of surfactant/alkaline/polymer flooding. Journal of Daqing Petroleum Institute, 1999, 23(1):76-78. [15] 王克亮, 闫文华, 王天凤, 等.渗透率对三元复合体系色谱分离及驱油效果影响的实验研究.油田化学, 2000, 17(2):164-167. WANG K L, YAN W H, WANG T F, et al. Chromatographic separation of components in ASP flooding system and ITS oil displacing efficiency in relation to core permeability. Oilfield Chemistry, 2000, 17(2):164-167. [16] SANG Q, LI Y, YU L. Enhanced oil recovery by branchedpreformed particle gel injection in parallel-sandpack models. Fuel, 2014, 105(5):295-306. [17] PEI H H, ZHANG G C, GE J J. et al. Study on the variation of dynamic interfacial tension in the process of alkaline flooding for heavy oil. Fuel, 2013, 104(5):372-378. [18] LASHKARBOLOOKI M,AYATOLLAHI S,RIAZI M. The impacts of aqueous ions on interfacial tension and wettability of an asphaltenic-acidic crude oil reservoir during smart water injection. Journal of Chemical & Engineering Data, 2014, 59(11):3624-3634. [19] DAI C L, ZHAO J H, YAN L P, et al. Adsorption behavior of cocamidopropyl betaine under conditions of high temperature and high salinity. Journal of Applied Polymer Science, 2014, 131(12):1-7. |
[1] | 关蕴文, 苏思羽, 蒲仁海, 王启超, 闫肃杰, 张仲培, 陈硕, 梁东歌. 鄂尔多斯盆地南部旬宜地区古生界天然气成藏条件及主控因素[J]. 岩性油气藏, 2024, 36(6): 77-88. |
[2] | 王子昕, 柳广弟, 袁光杰, 杨恒林, 付利, 王元, 陈刚, 张恒. 鄂尔多斯盆地庆城地区三叠系长7段烃源岩特征及控藏作用[J]. 岩性油气藏, 2024, 36(5): 133-144. |
[3] | 尹虎, 屈红军, 孙晓晗, 杨博, 张磊岗, 朱荣幸. 鄂尔多斯盆地东南部三叠系长7油层组深水沉积特征及演化规律[J]. 岩性油气藏, 2024, 36(5): 145-155. |
[4] | 牟蜚声, 尹相东, 胡琮, 张海峰, 陈世加, 代林锋, 陆奕帆. 鄂尔多斯盆地陕北地区三叠系长7段致密油分布特征及控制因素[J]. 岩性油气藏, 2024, 36(4): 71-84. |
[5] | 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83. |
[6] | 王宏波, 张雷, 曹茜, 张建伍, 潘星. 鄂尔多斯盆地二叠系盒8段河流扇沉积模式及勘探意义[J]. 岩性油气藏, 2024, 36(3): 117-126. |
[7] | 曹江骏, 王茜, 王刘伟, 李诚, 石坚, 陈朝兵. 鄂尔多斯盆地合水地区三叠系长7段夹层型页岩油储层特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 158-171. |
[8] | 李启晖, 任大忠, 甯波, 孙振, 李天, 万慈眩, 杨甫, 张世铭. 鄂尔多斯盆地神木地区侏罗系延安组煤层微观孔隙结构特征[J]. 岩性油气藏, 2024, 36(2): 76-88. |
[9] | 雷涛, 莫松宇, 李晓慧, 姜楠, 朱朝彬, 王桥, 瞿雪姣, 王佳. 鄂尔多斯盆地大牛地气田二叠系山西组砂体叠置模式及油气开发意义[J]. 岩性油气藏, 2024, 36(2): 147-159. |
[10] | 翟咏荷, 何登发, 开百泽. 鄂尔多斯盆地及邻区中—晚二叠世构造-沉积环境与原型盆地演化[J]. 岩性油气藏, 2024, 36(1): 32-44. |
[11] | 龙盛芳, 侯云超, 杨超, 郭懿萱, 张杰, 曾亚丽, 高楠, 李尚洪. 鄂尔多斯盆地西南部庆城地区三叠系长7段—长3段层序地层特征及演化规律[J]. 岩性油气藏, 2024, 36(1): 145-156. |
[12] | 白佳佳, 司双虎, 陶磊, 王国庆, 王龙龙, 史文洋, 张娜, 朱庆杰. DES+CTAB复配驱油剂体系提高低渗致密砂岩油藏采收率机理[J]. 岩性油气藏, 2024, 36(1): 169-177. |
[13] | 杜江民, 崔子豪, 贾志伟, 张毅, 聂万才, 龙鹏宇, 刘泊远. 鄂尔多斯盆地苏里格地区奥陶系马家沟组马五5亚段沉积特征[J]. 岩性油气藏, 2023, 35(5): 37-48. |
[14] | 魏嘉怡, 王红伟, 刘刚, 李涵, 曹茜. 鄂尔多斯盆地西缘冲断带石炭系羊虎沟组沉积特征[J]. 岩性油气藏, 2023, 35(5): 120-130. |
[15] | 尹艳树, 丁文刚, 安小平, 徐振华. 鄂尔多斯盆地安塞油田塞160井区三叠系长611储层构型表征[J]. 岩性油气藏, 2023, 35(4): 37-49. |
|