岩性油气藏 ›› 2017, Vol. 29 ›› Issue (4): 101–107.doi: 10.3969/j.issn.1673-8926.2017.04.012

• 技术方法 • 上一篇    下一篇

自适应倾角导向技术在断层识别中的应用

段友祥, 曹婧, 孙歧峰   

  1. 中国石油大学 (华东)计算机与通信工程学院, 山东 青岛 266580
  • 收稿日期:2016-11-20 修回日期:2017-01-26 出版日期:2017-07-21 发布日期:2017-07-21
  • 第一作者:段友祥(1964-),男,博士,教授,主要从事计算机技术在油气领域的应用方面的科研及教学工作。地址:(266580)山东省青岛市黄岛区长江西路66号中国石油大学(华东)计算机与通信工程学院。Email:yxduan@upc.edu.cn。
  • 基金资助:
    国家重大科技专项“断块油田特高含水期提高水驱采收率技术”(编号:2011ZX0511-003)资助

Application of auto-adaptive dip-steering technique to fault recognition

DUAN Youxiang, CAO Jing, SUN Qifeng   

  1. College of Computer and Communication Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2016-11-20 Revised:2017-01-26 Online:2017-07-21 Published:2017-07-21

摘要: 在油气勘探开发过程中,断层和裂隙的分布形态一直是三维地震资料解释所关注的重要问题。地震资料中包含的随机噪音,往往影响断层的刻画精度,因此,解释过程中常采用去噪技术来消除噪音,提高断层刻画精度。常规去噪技术在提高地震资料信噪比的同时通常会破坏反射结构的边缘信息和断层的尖锐性,影响构造解释和油藏描述的准确性。为了解决结构保护去噪和断层检测难题,提出基于自适应倾角导向技术的断层识别方法,具体步骤如下:先生成包含采样点倾角和方位角信息的导向体;再将导向体作为滤波的输入数据进行导向滤波,提高信噪比的同时保留地层中的重要构造信息;最后将滤波后的数据体在倾角导向的控制下进行相似性属性提取,从而识别断层,提高断层解释精度。结果表明:在自适应倾角导向技术运用基础上,最终提取的相似性属性有效地突出了断层处的不连续性,去噪效果良好,有效增强了断层的识别能力。整体而言,自适应倾角导向技术是一种刻画断层和识别地质体边界的有效方法,目前已在复杂油气藏勘探中取得了较好的应用效果。

关键词: 地震地貌学, 切片, 地震属性, 相干体, 三维可视化

Abstract: The development of fault and fracture is an important issue in 3D seismic interpretation during hydrocarbon exploration and development. The random noises contained in seismic data often affect the depiction accuracy of faults, so denoising technique is often used in the interpretation process to reduce noise and improve the accuracy of fault description. The conventional denoising technique can not only improve the S/N of seismic data, but also destroy the edge information of the reflection structure and the sharpness of fault, which affects the accuracy of structural interpretation and reservoir description. In order to solve the problems of structure protection denoising and fault detection, a method of fault recognition based on auto-adaptive dip-steering was proposed. A steering cube was generated by auto-adaptive dip-steering technology which contains dip and azimuth information of sampling point, and then the steering cube was used as a filter input for constraint denoising to improve S/N and retain important structural information, and finally, the similarity attributes were extracted from filtered seismic volume under the guidance of dip-steering so as to recognize fault and improve the accuracy of fault interpretation. The result shows that the similarity attributes extracted by auto-adaptive dip-steering technique effectively highlight the discontinuity of fault, and it has a good noise reduction result. Auto-adaptive dip-steering technique effectively enhances the fault recognition ability, so it is an effective method to describe the faults and the geological boundary, and has a good application prospect in complex reservoir exploration.

Key words: seismic geomorphology, slicing, seismic attribute, coherence, 3D visualization

中图分类号: 

  • P315.0
[1] BAHORICH M, FARMER S. 3-D seismic discontinuity for faults and stratigraphic features:the coherence cube. The Leading Edge, 1995, 14(10):1053-1058.
[2] MARFURT K J, KIRLIN R L, FARMER S L, et al. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics, 1998, 63(4):1150-1165.
[3] GERSZTENKORN A, MARFURT K J. Eigen structure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics, 1999, 64(5):1468-1479.
[4] PERONA P, MALIK J. Scale-space and edge detection using anisotropicdiffusion. IEEE Transactions on Pattern Analysis and MachineIntelligence, 1990, 12(7):629-639.
[5] FEHMERS G C, HOCKER C F W. Fast structural interpretation with structure-oriented filtering. Geophysics, 2003, 68(4):1286-1293.
[6] 陈可洋, 吴沛熹, 杨微.扩散滤波方法在地震资料处理中的应用研究.岩性油气藏, 2014, 26(1):117-122. CHEN K Y, WU P X, YANG W. Application of diffusion filtering method to the seismic data processing. Lithologic Reservoirs, 2014, 26(1):117-122.
[7] HEMON C H, MACE D. Use of the karhunen-loeve transformation in seismic data processing. Geophysical Prospecting, 1978, 26(2):600-606.
[8] LUO Y, MARHOON M, DOSSARY S A, et a1. Edge-preserving smoothing and applications. The Leading Edge, 2002, 21(2):136-158.
[9] 赵岩, 贺振华, 黄德济.边缘保真去噪在地震相干体计算中的应用. 岩性油气藏, 2010, 22(2):95-98. ZHAO Y, HE Z H, HUANG D J. Application of edge preserving smoothing to the calculation of seismic coherence cube. Lithologic Reservoirs, 2010, 22(2):95-98.
[10] 尹川, 杜向东, 赵汝敏, 等.基于倾角控制的构造导向滤波及其应用. 地球物理学进展, 2014, 29(6):2818-2822. YI C, DU X D, ZHAO R M, et al. Dip steered structure oriented filter and its application. Process in Geophysics, 2014, 29(6):2818-2822.
[11] TINGDAHL K M. Improving seismic detectability using intrinsic directionality. Goteborg:Goteborg University, 1999.
[12] TINGDAHL KM, DE ROOIJ M. Semi-automatic detection of faults in 3D seismic data. Geophysical Prospecting, 2005, 53(4):533-542.
[13] TINGDAHL K M, DE GROOT P F M. Post-stack dip-and azimuth processing. Journal of Seismic Exploration, 2003, 12(2):113-126.
[14] 刘伟, 陈学华, 贺振华, 等.基于倾角数据体的神经网络气烟囱识别.石油地球物理勘探, 2012, 47(6):937-944. LIU W, CHEN X H, HE Z H, et al. Neural network gas chimney identification based on steering cube. Oil Geophysical Prospecting, 2012, 47(6):937-944.
[15] 费振邦. 浅谈煤层真倾角与视倾角相互换算的方法. 科技展望, 2016, 26(10):184. FEI Z B. Introduction to true dip and apparent dip conversion method of coal seam. Science and Technology, 2016, 26(10):184.
[16] BARNES A E. Theory of 2-D complex seismic trace analysis. Geophysics, 1996, 61(1):264-272.
[17] BAKKER P, VAN VLIET L J, VERBEEK P W. Edge preserving orientation adaptive filtering. 1999. Fort Collins:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 1999.
[18] FINN C J. Estimation of three dimensional dip and curvature from reflection seismic data. Texas:University of TexasatAustin, 1986.
[19] MARFURT K J. Robust estimates of 3 D reflector dip and azimuth. Geophysics, 2006, 71(4):29-40.
[20] 赵明章, 范雪辉, 刘春芳, 等. 利用构造导向滤波技术识别复杂断块圈闭. 石油地球物理勘探, 2011, 46(S1):128-133. ZHAO M Z, FAN X H, LIU C F, et al. Complex fault-block traps identification with structure-oriented filter. Oil Geophysical Prospecting, 2011, 46(Suppl 1):128-133.
[21] TUKEY J W. Exploratory data analysis. Philippines:AddisonWesley Publishing Company, 1977:2-3.
[22] BEDNAR J B. Applications of median filtering to deconvolution, pulse estimation, and statistical editing of seismic data. Geophysics, 1983, 48(12):1598-1610.
[23] DUNCAN G, BERESFORD G. Median filter behaviour with seismic data. Geophysical Prospecting, 1995, 43(3):329-345.
[24] TINGDAHL K M, BRIL A H, GROOT P F D. Improving seismic chimney detection using directional attributes. Journal of Petroleum Science and Engineering, 2001, 29(3/4):205-211.
[1] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[2] 方锐, 蒋裕强, 陈沁, 曾令平, 罗宇卓, 周亚东, 杜磊, 杨广广. 川东北五宝场地区侏罗系沙溪庙组沉积特征[J]. 岩性油气藏, 2023, 35(2): 47-58.
[3] 刘化清, 冯明, 郭精义, 潘树新, 李海亮, 洪忠, 梁苏娟, 刘彩燕, 徐云泽. 坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征——以松辽盆地LHP地区嫩江组一段为例[J]. 岩性油气藏, 2021, 33(3): 1-12.
[4] 曹思佳, 孙增玖, 党虎强, 曹帅, 刘冬民, 胡少华. 致密油薄砂体储层预测技术及应用实效——以松辽盆地敖南区块下白垩统泉头组为例[J]. 岩性油气藏, 2021, 33(1): 239-247.
[5] 孙文举, 王应斌, 徐文军. 鄂尔多斯盆地东缘雷家碛地区盒8段致密储层“甜点”预测[J]. 岩性油气藏, 2019, 31(1): 69-77.
[6] 张闻亭,潘树新,刘震华,张丽萍,李伟,王巍. 地震沉积学在坳陷湖盆滩坝砂体预测中的应用———以酒西盆地Y区块间泉子段为例[J]. 岩性油气藏, 2016, 28(6): 109-116.
[7] 常少英,张先龙,刘永福,刘炜博,余异志,史红岭 . 薄层砂体识别的地震沉积学研究——以 TZ12 井区为例[J]. 岩性油气藏, 2015, 27(6): 72-77.
[8] 张水山, 刘勇江, 刘贤红. 建南地区须六段致密砂岩优质储层预测技术[J]. 岩性油气藏, 2015, 27(3): 98-102.
[9] 郭华军,陈能贵,徐洋,邹志文,李昌,王力宝. 地震沉积学在阜东地区沉积体系分析中的应用[J]. 岩性油气藏, 2014, 26(3): 84-88.
[10] 吴海波,王江,李军辉. 地震多属性融合技术在贝尔凹陷储层预测中的应用[J]. 岩性油气藏, 2014, 26(2): 96-101.
[11] 王俊怀,吴俊军,尹昌霞,吴涛,卞保力. 准噶尔盆地东部阜东斜坡区侏罗系岩性圈闭识别[J]. 岩性油气藏, 2013, 25(6): 62-66.
[12] 韩长城,林承焰,马存飞. 地震多属性优选技术在碳酸盐岩缝洞型储层预测中的应用[J]. 岩性油气藏, 2013, 25(6): 67-70.
[13] 杨鹏飞,张丽娟,郑多明,李国会,罗浩渝,徐雷. 塔里木盆地奥陶系碳酸盐岩大型缝洞集合体定量描述[J]. 岩性油气藏, 2013, 25(6): 89-94.
[14] Yuriy Tyapkin, Iana Mendrii. 改进的地震相干体算法及其应用———以乌克兰顿涅茨盆地裂缝型储层为例[J]. 岩性油气藏, 2013, 25(5): 8-12.
[15] 高 磊,明 君,闫 涛,赵海峰,李 宾. 地震属性综合分析技术在泥岩隔夹层识别中的应用[J]. 岩性油气藏, 2013, 25(4): 101-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .