岩性油气藏 ›› 2018, Vol. 30 ›› Issue (5): 11–17.doi: 10.12108/yxyqc.20180502

• 油气地质 • 上一篇    下一篇

四川盆地长宁龙马溪组页岩赋存空间及含气规律

沈瑞1, 胡志明1, 郭和坤1, 姜柏材2, 苗盛1, 李武广3   

  1. 1. 中国石油勘探开发研究院 渗流流体力学研究所, 河北 廊坊 065007;
    2. 重庆科技学院 石油与天然气工程学院, 重庆 401331;
    3. 中国石油西南油气田分公司 页岩气研究院, 成都 610021
  • 收稿日期:2018-01-25 修回日期:2018-03-18 出版日期:2018-09-14 发布日期:2018-09-14
  • 作者简介:沈瑞(1982-),男,博士,工程师,主要从事页岩储层孔隙结构与孔径分布、页岩气渗流机理及数学模型方面的研究工作。地址:(065007)河北省廊坊市广阳区44号信箱渗流流体力学研究所。Email:shenrui69@petrochina.com.cn。
  • 基金资助:
    国家重大科技专项课题“页岩气渗流规律与气藏工程方法”(编号:2017ZX05037001)资助

Storage space and gas content law of Longmaxi shale in Changning area,Sichuan Basin

SHEN Rui1, HU Zhiming1, GUO Hekun1, JIANG Baicai2, MIAO Sheng1, LI Wuguang3   

  1. 1. Department of Porous Flow & Fluid Mechanics, PetroChina Research Institute of Petroleum Exploration & Development, Langfang 065007, Hebei, China;
    2. School of Oil and Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China;
    3. Shale Gas Research Institute, PetroChina Southwest Oil & Gas Field Company, Chengdu 610021, China
  • Received:2018-01-25 Revised:2018-03-18 Online:2018-09-14 Published:2018-09-14

摘要: 四川盆地长宁地区下志留统龙马溪组页岩广泛发育,该地区页岩储层的微观孔隙结构及全尺度孔径分布特征尚不明确,运用聚焦离子束扫描电镜、高压压汞、低温氮吸附及低温CO2吸附等实验技术,以宁203井为例,研究了龙马溪组下部页岩储层的孔隙结构特征,并建立了一套页岩纳—微米全尺度孔径分布测试分析方法。该方法利用气体吸附法和高压压汞法获得第1孔径分布数据和第2孔径分布数据,通过对2种方法获得的重复部分孔径分布数据进行差异性分析,并根据分析判断结果获取处理后的孔径为3.7~200.0 nm的分布数据,再结合2种方法获得的不重复部分的孔径分布数据,从而可以计算微孔、介孔和宏孔在整个岩石样品中的占比,获得岩石样品全尺度孔径分布数据。结果表明:该区龙马溪组下部页岩孔隙结构复杂,“墨水瓶”状细颈孔隙大量存在,微孔与中孔、大孔相互连通,但孔喉细小,连通性较差;介孔和微孔占比超过80%。直径> 15 nm的孔喉中主要为游离气,直径< 2 nm的孔喉中主要为吸附气。

关键词: 孔隙结构, 赋存空间, 页岩气, 龙马溪组, 四川盆地

Abstract: The shales of the lower Silurian Longmaxi are widely developed in Changning area of Sichuan Basin. The micro pore structure and full-scale pore size distribution characteristics of shale reservoirs in this area are not yet clear. The pore structure of lower Longmaxi shale reservoir was researched by field emission scanning electron microscope(FE-SEM),high pressure mercury intrusion,low temperature nitrogen adsorption and low temperature CO2adsorption. Taking the Ning 203 well as an example,a set of analysis method about nanometer-micrometer full scale pore size distribution was established. The first pore size distribution was obtained by gas adsorption, and the second pore size distribution was obtained by high pressure mercury intrusion in this method. The difference between the data of the pore size distribution obtained by the two kinds of tests was judged. According to the result of the judgment,the pore size distribution data of 3.7-200.0 nm were obtained after treatment. The pore size distribution data of the non-repeated pore size were obtained by the two methods combined. The micropores,mesopores and macropores for core samples in proportion were calculated,so the full-scale pore size distribution data of core samples were obtained. Results show the lower part of Longmaxi shale pore structure is very complex. Micropores are connected in series with mesopores and macropores. The pore throat is small,so the connectivity is poor. Mesoporous and microporous accounted for the percentage of pore volume is more than 80%. Pore throats of the diameter above 15 nm mainly contain free gas,and the ones below 2 nm mainly contain adsorbed gas.

Key words: pore structure, storage space, shale gas, Longmaxi Formation, Sichuan Basin

中图分类号: 

  • TE311
[1] 王社教,王兰生,黄金亮,等.上扬子地区志留系页岩气成藏条件.天然气工业,2009,29(5):45-50. WANG S J,WANG L S,HUANG J L,et al. Accumulation conditions of shale gas reservoirs in Silurian of the Upper Yangtze region. Natural Gas Industry,2009,29(5):45-50.
[2] 何建华,丁文龙,付景龙,等.页岩微观孔隙成因类型研究.岩性油气藏,2014,26(5):30-35. HE J H,DING W L,FU J L,et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin. Lithologic Reservoirs,2014,26(5):30-35.
[3] 黄文明,刘树根,马文辛,等.川东南-鄂西渝东地区下古生界页岩气勘探前景.地质通报,2011,30(2/3):364-371. HUANG W M,LIU S G,MA W X,et al. Shale gas exploration prospect of Lower Paleozoic in southeastern Sichuan and western Hubei-eastern Chongqing areas,China. Geological Bulletin of China,2011,30(2/3):364-371.
[4] 李艳霞,林娟华,龙幼康,等.中扬子地区下古生界海相泥-页岩含气勘探远景.地质通报,2011,30(2/3):349-356. LI Y X,LIN J H,LONG Y K,et al. Exploration prospect of gasbearing marine mudstone-shale in Lower Palaeozoic in the central Yangtze area,China. Geological Bulletin of China,2011,30(2/3):349-356.
[5] 熊健,罗丹序,刘向君,等.鄂尔多斯盆地延长组页岩孔隙结构特征及其控制因素.岩性油气藏,2016,28(2):16-23. XIONG J,LUO D X,LIU X J,et al. Characteristics and controlling factors of shale pore structure of Yanchang Formation in Ordos Basin. Lithologic Reservoirs,2016,28(2):16-23.
[6] LIANG L,XIONG J,LIU X. An investigation of the fractal characteristics of the Upper Ordovician Wufeng Formation shale using nitrogen adsorption analysis. Journal of Natural Gas Science and Engineering,2015,27:402-409.
[7] 徐祖新.基于CT扫描图像的页岩储层非均质性研究.岩性油气藏,2014,26(6):46-49. XU Z X. Heterogeneity of shale reservoirs based on CT images. Lithologic Reservoirs,2014,26(6):46-49.
[8] 孙文峰,李玮,董智煜,等.页岩孔隙结构表征方法新探索.岩性油气藏,2017,29(2):125-130. SUN W F,LI W,DONG Z Y,et al. A new approach to the characterization of shale pore structure. Lithologic Reservoirs,2017, 29(2):125-130.
[9] 王淑芳,董大忠,王玉满,等.四川盆地南部志留系龙马溪组富有机质页岩沉积环境的元素地球化学判别指标.海相油气地质,2014,19(3):27-34. WANG S F,DONG D Z,WANG Y M,et al. Geochemistry evaluation index of redox-sensitive elements for depositional environments of Silurian Longmaxi organic-rich shale in the south of Sichuan Basin. Marine Origin Petroleum Geology,2014,19(3):27-34.
[10] 陈波,皮定成.中上扬子地区志留系龙马溪组页岩气资源潜力评价.中国石油勘探,2009,14(3):15-19. CHEN B,PI D C. Silurian Longmaxi shale gas potential analysis in Middle & Upper Yangtze region. China Petroleum Exploration, 2009,14(3):15-19.
[11] SING K S W,EVERETT D H,HAUL R A W,et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure and Applied Chemistry,1985,57(4):603-619.
[12] 龚小平,唐洪明,赵峰,等.四川盆地龙马溪组页岩储层孔隙结构的定量表征.岩性油气藏,2016,28(3):48-57. GONG X P,TANG H M,ZHAO F,et al. Quantitative characterization of pore structure in shale reservoir of Longmaxi Formation in Sichuan Basin. Lithologic reservoir,2016,28(3):48-57.
[13] LI T,TIAN H,CHEN J,et al. Application of low pressure gas adsorption to the characterization of pore size distribution of shales:an example from Southeastern Chongqing area,China. Journal of Natural Gas Geoscience,2016,1(3):221-230.
[14] HAN H,CAO Y,CHEN S,et al. Influence of particle size on gasadsorption experiments of shales:an example from a Longmaxi Shale sample from the Sichuan Basin,China. Fuel,2016,186:750-757.
[15] 徐勇,吕成福,陈国俊,等.川东南龙马溪组页岩孔隙分形特征.岩性油气藏,2015,27(4):32-39. XU Y,LYU C F,CHEN G J,et al. Fractal characteristics of shale pores of Longmaxi Formation in southeast Sichuan Basin. Lithologic Reservoirs,2015,27(4):32-39.
[16] WASHBURN E W. Note on the method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences,1921,7(4):115-116.
[17] 胡容泽. 粉末颗粒和孔隙的测量. 北京:冶金工业出版社, 1982:23-33. HU R Z. Measurement of powder particles and pores. Beijing:Metallurgical Industry Press,1982:23-33.
[18] 刘玉新.颗粒材料孔结构形态的测量和表征.中国粉体技术, 2000,6(4):21-23. LIU Y X. Measurement and expression of pore structure of particle material. China Powder Science and Technology,2000,6(4):21-23.
[19] 谢晓永,唐洪明,王春华,等.氮气吸附法和压汞法在测试泥页岩孔径分布中的对比.天然气工业,2006,26(12):100-102. XIE X Y,TANG H M,WANG C H,et al. Contrast of nitrogen adsorption method and mercury porosimetry method in analysis of shales pores size distribution. Natural Gas Industry,2006,26(12):100-102.
[20] 杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征.石油学报,2013,34(2):301-311. YANG F,NING Z F,HU C P,et al. Characterization of microscopic pore structures in shale reservoirs. Acta Petrolei Sinica, 2013,34(2):301-311.
[21] LOWELL S,SHIELDS J ETHOMAS M A,et al. Characterization of porous solids and powders:surface area,pore size and density. Dordrecht:Kluwer Academic Publishers,2004:58-71.
[22] SCHNEIDER P. Adsorption-isotherms of microporous mesoporous solids revisited. Applied Catalysis A:General,1995,129(2):157-165.
[23] 邵晓红,张现仁,汪文川.密度泛函与分子模拟计算介孔孔径分布比较.物理化学学报,2003,19(6):538-542. SHAO X H,ZHANG X R,WANG W C. Comparison of density functional theory and molecular simulation methods for pore size distribution of mesoporous materials. Acta Physico-Chimica. Sinica,2003,19(6):538-542.
[24] 张超,高才,鲁雪生,等.多孔活性炭孔径分布的表征.离子交换与吸附,2006,22(1):187-192. ZHANG C,GAO C,LU X S,et al. Characterization of pore size distribution of porous activated carbons. Ion Exchange and Adsorption,2006,22(1):187-192.
[25] 蔚德磊,张双全,王壬峰,等.活性炭孔径分布与CO2吸附量关系的研究.煤炭转化,2014,37(3):68-71. WEI D L,ZHANG S Q,WANG R F,et al. Study on relationship between pore size distribution of active carbon and CO2 adsorptive capacity. Coal Conversion,2014,37(3):68-71.
[26] 盛骤,谢式千,潘承毅.概率论与数理统计(第三版).北京:高等教育出版社,2001:213-224. SHENG Z,XIE S Q,PAN C Y. Probability theory and mathematical statistics. 3rd ed. Beijing:Higher Education Press,2001:213-224.
[27] FITZGERALD J E,SUDIBANDRIYO M,PAN Z,et al. Modeling the adsorption of pure gases on coals with the SLD model. Carbon,2003,41(12):2203-2216.
[28] SOULE A D,SMITH C A,YANG X,et al. Adsorption modeling with the ESD equation of state. Langmuir,2001,17(10):2950-2957.
[29] BHARATH R,CARL T,LIRA R S. Simplified local density model for adsorption over large pressure ranges. AIChE Journal, 1995,41(4):838-845.
[1] 杨荣军, 彭平, 张静, 叶茂, 文华国. 四川盆地奉节地区上古生界古隆起特征及地质意义[J]. 岩性油气藏, 2021, 33(4): 1-9.
[2] 张本健, 田云英, 曾琪, 尹宏, 丁熊. 四川盆地西北部三叠系须三段砂砾岩沉积特征[J]. 岩性油气藏, 2021, 33(4): 20-28.
[3] 柴毓, 王贵文, 柴新. 四川盆地金秋区块三叠系须二段储层非均质性及成因[J]. 岩性油气藏, 2021, 33(4): 29-40.
[4] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[5] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[6] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[7] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[8] 魏钦廉, 崔改霞, 刘美荣, 吕玉娟, 郭文杰. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素[J]. 岩性油气藏, 2021, 33(2): 17-25.
[9] 张晓辉, 张娟, 袁京素, 崔小丽, 毛振华. 鄂尔多斯盆地南梁-华池地区长81致密储层微观孔喉结构及其对渗流的影响[J]. 岩性油气藏, 2021, 33(2): 36-48.
[10] 杨洋, 石万忠, 张晓明, 王任, 徐笑丰, 刘俞佐, 白卢恒, 曹沈厅, 冯芊. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组-龙马溪组为例[J]. 岩性油气藏, 2021, 33(2): 135-146.
[11] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[12] 王朋飞, 金璨, 臧小鹏, 田黔宁, 刘国, 崔文娟. 渝东南地区海相页岩有机质孔隙发育特征及演化[J]. 岩性油气藏, 2020, 32(5): 46-53.
[13] 王朋, 孙灵辉, 王核, 李自安. 鄂尔多斯盆地吴起地区延长组长6储层特征及其控制因素[J]. 岩性油气藏, 2020, 32(5): 63-72.
[14] 黄杰, 杜玉洪, 王红梅, 郭佳, 单晓琨, 苗雪, 钟新宇, 朱玉双. 特低渗储层微观孔隙结构与可动流体赋存特征——以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5): 93-101.
[15] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 冯心远,王宇超,胡自多,李 斐,邵喜春. 基于叠后地震记录求取整形算子的叠前资料拼接技术[J]. 岩性油气藏, 2007, 19(3): 93 -96 .
[4] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[5] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[6] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[7] 潘建国,卫平生,张虎权,谭开俊. 地震储层学与相关学科的比较[J]. 岩性油气藏, 2010, 22(3): 1 -4 .
[8] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[9] 邢二涛,张云锋. 水平井开发技术在贝中区N1 段应用研究[J]. 岩性油气藏, 2010, 22(Z1): 93 -95 .
[10] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .