岩性油气藏 ›› 2020, Vol. 32 ›› Issue (6): 138145.doi: 10.12108/yxyqc.20200613
张鹏1,2, 杨巧云3, 范宜仁3, 张云1,2, 张海涛4
ZHANG Peng1,2, YANG Qiaoyun3, FAN Yiren3, ZHANG Yun1,2, ZHANG Haitao4
摘要: 鄂尔多斯盆地东部致密砂岩储层属于典型的岩性气藏,储层物性差、储集空间有限、孔隙结构复杂,常规测井资料易受岩石骨架影响,孔隙流体对其响应特征的贡献小,测井曲线难以有效突出反映孔隙流体的信息,导致气层识别难度大。为了解决这一难题,基于Xu-White模型,利用阵列声波测井资料,结合Biot-Gassmann方程和流体替换模型,获取纵横波速度比差值、体积模量差值等含气敏感参数和含气指示因子,提出了一种识别致密砂岩气层的新方法。结果表明:阵列声波测井能够提供反映地层骨架和流体特征的声学信息,是致密砂岩储层含气性评价的有效手段;体积模量差值和含气指示因子识别准确度较高,含气性评价效果较好,而纵横波速度比差值评价效果较差。通过实际资料处理和试气资料成果验证,该方法评价鄂尔多斯盆地东部致密砂岩储层的含气性具有较高的有效性,同时可为其他地区同类致密砂岩储层含气性评价提供技术支持。
中图分类号:
[1] 董瑞霞, 范晓敏.致密砂岩气层综合识别方法的改进.世界地质, 2003, 22(3):266-270. DONG R X, FAN X M. Improvement of method for distinguishing formation containing gas from compact sandstone. Global Geology, 2003, 22(3):266-270. [2] 柳娜, 周兆华, 任大忠, 等.致密砂岩气藏可动流体分布特征及其控制因素:以苏里格气田西区盒8段与山1段为例. 岩性油气藏, 2019, 31(6):14-25. LIU N, ZHOU Z H, REN D Z, et al. Distribution characteristics and controlling factors of movable fluid in tight sandstone gas reservoir:a case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige Gas Field. Lithologic Reservoirs, 2019, 31(6):14-25. [3] 中国石油勘探与生产分公司.低孔低渗油气藏测井评价技术及应用.北京:石油工业出版社, 2009. PetroChina Exploration & Production Company. Evaluation technology and application of well logging in low-porosity and lowpermeability oil and gas reservoirs. Beijing:Petroleum Industry Press, 2009. [4] 楚翠金, 夏志林, 杨志强.延川南区块致密砂岩气测井识别与评价技术.岩性油气藏, 2017, 29(2):131-138. CHU C J, XIA Z L, YANG Z Q. Logging identification and evaluation of tight sandstone gas in the southern Yanchuan block. Lithologic Reservoirs, 2017, 29(2):131-138. [5] 范宜仁, 邢东辉, 邓少贵, 等.低渗透岩石声学特征及在含气性预测中的应用.西南石油大学学报(自然科学版), 2015, 37(5):64-70. FAN Y R, XING D H, DENG S G, et al. Acoustic properties of low permeability cores and its application to reservoir gas predication. Journal of Southwest Petroleum University(Science & Technology Edition), 2015, 37(5):64-70. [6] 张永军, 顾定娜, 马肃滨, 等.阵列声波测井资料在吐哈油田致密砂岩气层识别中的应用.测井技术, 2012, 36(2):175-178. ZHANG Y J, GU D N, MA S B, et al. The application of array acoustic wave data to tight sandstone gas reservoir in Tuha Oilfield. Well Logging Technology, 2012, 36(2):175-178. [7] 张海涛, 石玉江, 张鹏, 等.基于偶极横波测井的低渗透砂岩气层识别方法.测井技术, 2015, 39(5):591-595. ZHANG H T, SHI Y J, ZHANG P, et al. The identification of low permeability sandstone gas reservoir based on the DSI. Well Logging Technology, 2015, 39(5):591-595. [8] 成志刚, 张蕾, 赵建武, 等.利用岩石声学特性评价致密砂岩储层含气性.测井技术, 2013, 37(3):253-257. CHENG Z G, ZHANG L, ZHAO J W, et al. Gas evaluation in tight sand reservoir using acoustic characteristic of rock. Well Logging Technology, 2013, 37(3):253-257. [9] 陈国文, 邓志文, 姜太亮, 等.纵横波联合解释技术在气云区的应用.岩性油气藏, 2019, 31(6):79-87. CHEN G W, DENG Z W, JIANG T L, et al. Application of PPwave and SS-wave joint interpretation technology in gas cloud area. Lithologic Reservoirs, 2019, 31(6):79-87. [10] HASHIN Z, SHTRIKMAN S. A variational approach to the theory of the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids, 1963, 11(2):127-140. [11] BERRYMAN J G. Mixture theories for rock properties//Thomas J A. Rock physics and phase relations:a handbook of physical constants. Washington DC:American Geophysical Union, 1995:205-228. [12] MAVKO G, MUKERJI T, DVORKIN J. The rock physics handbook(Tools for seismic analysis of porous media) Ⅱ. New York:Cambridge University Press, 2009:110-115. [13] HILL R. The elastic behavior of crystalline aggregate. Proceedings of the Physical Society, 1952, 65(5):349-354. [14] BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. Journal of Acoustical Society of America, 1956, 28(2):168. [15] GASSMANN F. Elastic waves through a packing of spheres. Geophysics, 1951, 16(4):673-685. [16] XU S Y, WHITE R E. A new velocity model for clay-sand mixtures. Geophysical Prospecting, 1995, 43(1):91-118. [17] XU S Y, WHITE R E. A physical model for shear-wave velocity prediction. Geophysical Prospecting, 1996, 44(4):687-717. [18] KUSTER G T, TOKSOZ M N. Velocity and attenuation of seismic waves in two-phase media. Geophysics, 1974, 39(5):587-618. [19] 彭达, 肖富森, 冉崎, 等.基于KT模型流体替换的岩石物理参数反演方法.岩性油气藏, 2018, 30(5):82-90. PENG D, XIAO F S, RAN Q, et al. Inversion of rock physics parameters based on KT model fluid substitution. Lithologic Reservoirs, 2018, 30(5):82-90. [20] ESHELBY J D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society a Mathematical Physical and Engineering Sciences, 1957, 241(1226):376-396. [21] WU T T. The effect of inclusion shape on the elastic moduli of a two-phase material. International Journal of Solids and Structures, 1966, 2(1):1-8. [22] KEY R G, XU S Y. An approximation for the Xu-White velocity model. Geophysics, 2002, 67(5):1406-1414. [23] WOOD A W. A textbook of sound. New York:The MacMillam Company, 1955:360. [24] BRIE A, PAMPURI F, MARSALA A F, et al. Shear sonic interpretation in gas-bearing sands. SPE 30595, 1995. |
[1] | 杨楷乐, 何胜林, 杨朝强, 王猛, 张瑞雪, 任双坡, 赵晓博, 姚光庆. 高温-超压-高CO2背景下致密砂岩储层成岩作用特征——以莺歌海盆地LD10区新近系梅山组-黄流组为例[J]. 岩性油气藏, 2023, 35(1): 83-95. |
[2] | 龙盛芳, 王玉善, 李国良, 段传丽, 邵映明, 何咏梅, 陈凌云, 焦煦. 苏里格气田苏49区块盒8下亚段致密储层非均质性特征[J]. 岩性油气藏, 2021, 33(2): 59-69. |
[3] | 张艳, 高世臣, 孟婉莹, 成育红, 蒋思思. 致密砂岩储层AVO正演模拟过程中的不确定性分析[J]. 岩性油气藏, 2020, 32(6): 120-128. |
[4] | 楚翠金, 夏志林, 杨志强. 延川南区块致密砂岩气测井识别与评价技术[J]. 岩性油气藏, 2017, 29(2): 131-138. |
[5] | 艾林, 周明顺, 张杰, 梁霄, 钱博文, 刘迪仁. 基于煤岩脆性指数的煤体结构测井定量判识[J]. 岩性油气藏, 2017, 29(2): 139-144. |
[6] | 柴 毓,王贵文. 致密砂岩储层岩石物理相分类与优质储层预测—— — 以川中安岳地区须二段储层为例[J]. 岩性油气藏, 2016, 28(3): 74-85. |
[7] | 于兴河,李顺利,杨志浩. 致密砂岩气储层的沉积-成岩成因机理探讨与热点问题[J]. 岩性油气藏, 2015, 27(1): 1-13. |
[8] | 吴娟娟,李仲东,陈威,刘栋. 大牛地气田太2 段致密砂岩气层识别研究[J]. 岩性油气藏, 2013, 25(1): 102-106. |
[9] | 唐群英,尹太举,路遥,蔡文,吴军,任强燕. 川东北普光地区须家河组裂缝特征描述[J]. 岩性油气藏, 2012, 24(2): 42-47. |
[10] | 李云,时志强. 四川盆地中部须家河组致密砂岩储层流体包裹体研究[J]. 岩性油气藏, 2008, 20(1): 27-32. |
[11] | 张学涛,王祝文,原镜海. 利用时频分析方法在阵列声波测井中区分油水层[J]. 岩性油气藏, 2008, 20(1): 101-104. |
[12] | 袁胜学,王 江. 吐哈盆地鄯勒地区浅层气层识别方法研究[J]. 岩性油气藏, 2007, 19(3): 111-113. |
|