岩性油气藏 ›› 2020, Vol. 32 ›› Issue (6): 146–153.doi: 10.12108/yxyqc.20200614

• 油气田开发 • 上一篇    下一篇

海上底水油藏水平井水驱波及系数定量表征

张运来, 陈建波, 周海燕, 张吉磊, 章威   

  1. 中海石油 (中国) 有限公司天津分公司, 天津 300459
  • 收稿日期:2020-01-25 修回日期:2020-05-27 出版日期:2020-12-01 发布日期:2020-10-30
  • 第一作者:张运来(1982-),男,硕士,高级工程师,主要从事海上油气田开发调整及提高采收率方面的研究工作。地址:(300459)天津市滨海新区海川路2121号海油大厦B座。Email:zhangyl8@cnooc.com.cn。
  • 基金资助:
    国家科技重大专项“渤海油田加密调整及提高采收率油藏工程技术示范”(编号:2016ZX05058-001)资助

Quantitative characterization of sweep coefficient of water drive in horizontal well for offshore bottom water reservoir

ZHANG Yunlai, CHEN Jianbo, ZHOU Haiyan, ZHANG Jilei, ZHANG Wei   

  1. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China
  • Received:2020-01-25 Revised:2020-05-27 Online:2020-12-01 Published:2020-10-30

摘要: 海上底水油藏开发中后期面临着水驱油规律认识不清及水平井井间水驱波及系数定量描述难的问题。以渤海Q油田为例,利用室内一维长岩心水驱油实验、油藏数值模拟方法,建立了底水油藏精细数值模型,研究了底水油藏长期水驱后驱油效率和水平井井间水驱波及系数变化规律。结果表明:水驱油实验中驱替倍数提高至2 000 PV,驱替速度由1 mL/min提高至5 mL/min,驱油效率较常规水驱驱替倍数为100 PV时提高了15%~20%;基于数值模拟的水平井水驱波及体积研究,通过引入高倍水驱后相渗曲线,并将模型网格精度提高至长×宽×高为10.0 m×10.0 m×0.3 m时,实现了对水驱波及体积的精细刻画,计算出的波及系数由原始模型的66.7%降低为54.6%,提高了模型计算精度;水平井布井油柱高度和井距均是影响井间水驱波及系数的主控因素,水平段油柱高度越低,井距越大,井间水驱波及系数越低。基于以上研究结果,建立了海上底水油藏井间水驱波及系数图版,明确了底水油藏水平井布井界限参数:布井井距100~150 m,油柱高度6~8 m,井控储量(15~25)万m3,水平井最大提液幅度2 000 m3/d,极限经济产油量10 m3/d,水平井累计产油量大于5万m3。该研究成果成功指导了海上Q油田底水油藏21口加密水平井的实施,可为底水油藏中后期高效挖潜提供借鉴。

关键词: 海上底水油藏, 特高含水期, 驱替倍数, 驱油效率, 水平井, 波及体积, 加密界限, 矿场应用

Abstract: In the middle and late stage of the development of offshore bottom water reservoir, there are some problems, such as unclear understanding of water drive oil law and difficulty in quantitative description of water drive sweep coefficient between horizontal wells. Taking Q oilfield in Bohai Sea as an example,the fine numerical model of bottom water reservoir was established by using indoor one-dimensional long core water flooding experiment and reservoir numerical simulation method, the variation law of flooding efficiency and cross-well water flooding sweep coefficient between horizontal wells after long-term water flooding in bottom water reservoir was carried out. The results show that the displacement multiple in the water displacement experiment was increased to 2 000 PV and the displacement speed was increased from 1 mL/min to 5 mL/min, and the displacement efficiency was increased by 15%-20% when the displacement efficiency is more than 100 PV. Based on the numerical simulation of horizontal well water drive sweep volume, the phase permeability curve after high-power water drive was introduced, and the grid accuracy of the model was improved to 10.0 m×10.0 m×0.3 m,realizing the fine characterization of water drive sweep volume. The calculated sweep coefficient was reduced from 66.7% of the original model to 54.6%, which improves the calculation accuracy of the model. The height and spacing of oil string in horizontal well distribution are the main control factors affecting cross-hole water drive sweep coefficient. The lower the oil column height in horizontal section is,the larger the well spacing is,and the lower the sweep coefficient of cross-hole water drive is. Based on the research results,the cross-well water drive sweep coefficient chart of offshore bottom water reservoir was established,and the boundary parameters of horizontal well layout in bottom water reservoir were defined. The well distance of the well is 100-150 m,the height of the oil column is 6-8m,the well control reserve is(15-25)×104m3,the maximum extraction of the horizontal well is 2 000 m3/d,the limit economic oil production is 10 m3/d,and the accumulated oil production of the horizontal well can reach more than 50 000 m3. The research results have successfully guided the implementation of 21 infill horizontal wells in bottom water reservoir of offshore Q oilfield,and can provide reference for high efficiency potential tapping in the middle and late stage of the bottom water reservoir.

Key words: offshore bottom water reservoir, ultra-high water cut stage, displacement multiple, displacement efficiency, horizontal well, sweep volume, infill limit, mine application

中图分类号: 

  • TE341
[1] 周守为. 中国近海典型油田开发实践. 北京:石油工业出版社, 2009:28-29. ZHOU S W. The typical development practice of Chinese offshore oilfield. Beijing:Petroleum Industry Press, 2009:28-29.
[2] 郭太现, 杨庆红, 黄凯, 等.海上河流相油田高效开发技术.石油勘探与开发, 2013, 40(6):708-714. GUO T X, YANG Q H, HUANG K, et al. Techniques for highefficient development of offshore fluvial oilfields. Petroleum Exploration and Development, 2013, 40(6):708-714.
[3] 李廷礼, 廖新武, 徐玉霞, 等.海上低幅底水稠油油藏特征及水平井开发初探.特种油气藏, 2012, 19(6):95-97. LI T L, LIAO X W, XU Y X, et al. Initial study on characteristics and development with horizontal wells of heavy oil reservoirs with small bottom water in offshore. Special Oil & Gas Reservoirs, 2012, 19(6):95-97.
[4] 张运来, 廖新武, 胡勇, 等.海上稠油油田高含水期开发模式研究.岩性油气藏, 2018, 30(4):120-126. ZHANG Y L, LIAO X W, HU Y, et al. Development models for offshore heavy oil field in high water cut stage. Lithologic Reservoirs, 2018, 30(4):120-126.
[5] 韩大匡.关于高含水油田二次开发理念、对策和技术路线的探讨.石油勘探与开发, 2010, 37(5):583-591. HAN D K. Discussions on concepts,countermeasures and technical routes for the redevelopment of high water-cut oilfields. Petroleum Exploration and Development, 2010, 37(5):583-591.
[6] 兰玉波, 赵永胜, 魏国章.矿场密闭取心与室内模拟的驱油效率分析.大庆石油学院学报, 2005, 29(4):43-45. LAN Y B, ZHAO Y S, WEI G Z. Analysis of displacement efficiency of field pressure coring and lab test. Journal of Daqing Petroleum Institute, 2005, 29(4):43-45.
[7] 纪淑红, 田昌炳, 石成方, 等.高含水阶段重新认识水驱油效率.石油勘探与开发, 2012, 39(3):338-345. JI S H, TIAN C B, SHI C F, et al. New understanding on wateroil displacementefficiency in a high water-cut stage. Petroleum Exploration and Development, 2012, 39(3):338-345.
[8] 张伟, 曹仁义, 罗东红, 等.南海珠江口盆地海相砂岩油藏高倍数水驱驱替特征.油气地质与采收率, 2018, 25(2):64-71. ZHANG W, CAO R Y, LUO D H, et al. Displacement characteristics of high-multiple water drive in marine sandstone reservoirs in the Pearl River Mouth Basin, South China Sea. Petroleum Geology and Recovery Efficiency, 2018, 25(2):64-71.
[9] 李传亮, 朱苏阳. 水驱油效率可达到100%. 岩性油气藏, 2016, 28(1):1-5. LI C L, ZHU S Y. The efficiency of water flooding can reach 100%. Lithologic Reservoirs, 2016, 28(1):1-5.
[10] 高淑梅, 范绍雷, 梅启亮, 等.水平井开发技术在底水油藏挖潜中的应用.大庆石油地质与开发, 2009, 28(4):56-59. GAO S M, FAN S L, MEI Q L, et al. Application of horizontal well development technology in tapping potential of bottom-water reservoirs. Petroleum Geology and Oilfield Development in Daqing, 2009, 28(4):56-59.
[11] 孙亮, 李勇, 杨菁, 等.薄层底水碳酸盐岩油藏水平井含水上升模式及优化注水技术.岩性油气藏, 2019, 31(6):135-144. SUN L, LI Y, YANG J, et al. Water-cut rising patterns and optimal water injection techniques of horizontal wells in thin carbonate reservoir with bottom water. Lithologic Reservoirs, 2019, 31(6):135-144.
[12] 蒋平, 张贵才, 何小娟, 等.底水锥进的动态预测方法.钻采工艺, 2007, 30(2):71-73. JIANG P, ZHANG G C, HE X J, et al. A dynamic prediction method for bottom water coning. Drilling & Production Technology, 2007, 30(2):71-73.
[13] GUO B Y, LEE R L-H. A simple approach to optimization of completion interval in oil/water coning systems. SPE 23994, 1993.
[14] 黄咏梅, 王子胜.产液量变化对水锥的作用机制.油气地质与采收率, 2008, 15(6):83-85. HUANG Y M, WANG Z S. Action mechanism of liquid producing capacity change on water cone. Petroleum Geology and Recovery Efficiency, 2008, 15(6):83-85.
[15] 王涛.底水油藏直井含水上升预测新方法的建立.岩性油气藏, 2013, 25(5):109-112. WANG T. A new method for water cut rising forecasting of vertical wells in bottom water reservoir. Lithologic Reservoirs, 2013, 25(5):109-112.
[16] 侯君, 程林松.常规底水油藏水锥高度计算方法研究.西安石油大学学报(自然科学版), 2006, 21(3):23-26. HOU J, CHENG L S. Calculation method for the water cone height of bottom-water reservoir. Journal of Xi'an Shiyou University(Natural Science Edition), 2006, 21(3):23-26.
[17] 侯亚伟.基于动态数据的底水油藏水平井水脊增长模型.大庆石油地质与开发, 2018, 37(2):79-82. HOU Y W. Growth model of the horizontal-wellwater crest in the bottom-water oil reservoir basen on the dynamic data. Petroleum Geology and Oilfield Development in Daqing, 2018, 37(2):79-82.
[18] 王庆, 刘慧卿, 曹立迎. 非均质底水油藏水平井水淹规律研究.岩性油气藏, 2010, 22(1):122-125. WANG Q, LIU H Q, CAO L Y. Water flooding law of horizontal well in heterogeneous bottom water reservoir. Lithologic Reservoirs, 2010, 22(1):122-125.
[19] 邹威, 姚约东, 王庆, 等.底水油藏水平井水脊形态影响因素. 油气地质与采收率, 2017, 24(5):70-77. ZOU W, YAO Y D, WANG Q, et al. Study on influential factors of water cresting morphology in horizontal well of bottom water reservoirs.Petroleum Geology and Recovery Efficiency, 2017, 24(5):70-77.
[20] 李立峰, 岳湘安, 李良川, 等.底水油藏水平井开发水脊规律研究.油气地质与采收率, 2013, 20(1):89-91. LI L F, YUE X A, LI L C, et al. Study on water crest of horizontal wells in reservoirs with bottom water. Petroleum Geology and Recovery Efficiency, 2013, 20(1):89-91.
[21] 刘振平, 刘启国, 王宏玉, 等.底水油藏水平井水脊脊进规律. 新疆石油地质, 2015, 36(1):86-89. LIU Z P, LIU Q G, WANG H Y, et al. Water coning laws of horizontal well production in bottom water reservoirs. Xinjiang Petroleum Geology, 2015, 36(1):86-89.
[22] 王家禄, 刘玉章, 江如意, 等.水平井开采底水油藏水脊脊进规律的物理模拟.石油勘探与开发, 2007, 34(5):590-593. WANG J L, LIU Y Z, JIANG R Y, et al. 2-D physical modeling of water coning of horizontal wellproduction in bottom water driving reservoirs. Petroleum Exploration and Developmeng, 2007, 34(5):590-593.
[23] YUE P, DU Z M, CHEN X F, et al. The critical rate of horizontal wells in bottom-water reservoirs with an impermeable barrier. Petroleum Science, 2012, 9:223-229.
[24] 刘佳, 程林松, 黄世军.底水油藏水平井开发物理模拟实验研究.石油钻探技术, 2013, 41(1):87-92. LIU J, CHENG L S, HUANG S J. Physical modeling and experiment for horizontal wells in bottom water reservoir. Petroleum Drilling Techniques, 2013, 41(1):87-92.
[25] CHAPERON I.A theoretical study of coning toward horizontal and vertical wells in anisotropic formations:Subcritical and critical Rates. SPE 15377, 2013.
[26] PERMADI P, GUSTIAWAN E, ABDASSAH D. Water cresting and oil recovery by horizontal wells in the presence of impermeable streaks. SPE 35440, 1996.
[27] 周焱斌, 许亚南, 杨磊, 等.高含水期油田的注采关系调整和挖潜开采研究.天然气与石油, 2017, 35(6):59-65. ZHOU Y B, XU Y N, YANG L, et al. Reserach on injecttionproduction relationship adjustment and further development in high watercut oilfield. Natural Gas and Oil, 2017, 35(6):59-65.
[1] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[2] 周浩, 梁利侠. 水平井探测半径计算方法[J]. 岩性油气藏, 2024, 36(1): 157-168.
[3] 杨兆臣, 卢迎波, 杨果, 黄纯, 弋大琳, 贾嵩, 吴永彬, 王桂庆. 中深层稠油水平井前置CO2蓄能压裂技术[J]. 岩性油气藏, 2024, 36(1): 178-184.
[4] 蔡晖, 屈丹, 陈民锋. 组合井网储量动用规律及水平井加密合理技术策略——以渤海HD油田为例[J]. 岩性油气藏, 2021, 33(4): 147-155.
[5] 宋明明, 韩淑乔, 董云鹏, 陈江, 万涛. 致密砂岩储层微观水驱油效率及其主控因素[J]. 岩性油气藏, 2020, 32(1): 135-143.
[6] 姜瑞忠, 张春光, 郜益华, 耿艳宏, 余辉, 李昊远. 缝洞型碳酸盐岩油藏水平井分形非线性渗流[J]. 岩性油气藏, 2019, 31(6): 118-126.
[7] 徐有杰, 刘启国, 王瑞, 刘义成. 复合油藏压裂水平井复杂裂缝分布压力动态特征[J]. 岩性油气藏, 2019, 31(5): 161-168.
[8] 安杰, 唐梅荣, 曹宗熊, 王文雄, 陈文斌, 吴顺林. 超低渗透低压油藏水平井转变开发方式试验[J]. 岩性油气藏, 2019, 31(5): 134-140.
[9] 王蓓, 刘向君, 司马立强, 徐伟, 李骞, 梁瀚. 磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用[J]. 岩性油气藏, 2019, 31(2): 124-133.
[10] 黄全华, 林星宇, 童凯, 陆云, 付云辉. 非达西渗流边水气藏水平井见水时间预测[J]. 岩性油气藏, 2019, 31(1): 147-152.
[11] 李传亮, 朱苏阳, 柴改建, 董凤玲. 直井与水平井的产能对比[J]. 岩性油气藏, 2018, 30(N): 12-16.
[12] 李继庆, 刘曰武, 黄灿, 高大鹏. 页岩气水平井试井模型及井间干扰特征[J]. 岩性油气藏, 2018, 30(6): 138-144.
[13] 王新杰. 致密气藏压裂水平井产能计算方法[J]. 岩性油气藏, 2018, 30(5): 161-168.
[14] 张运来, 廖新武, 胡勇, 李廷礼, 苏进昌. 海上稠油油田高含水期开发模式研究[J]. 岩性油气藏, 2018, 30(4): 120-126.
[15] 苏皓, 雷征东, 张荻萩, 李俊超, 鞠斌山, 张泽人. 致密油藏体积压裂水平井参数优化研究[J]. 岩性油气藏, 2018, 30(4): 140-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 段天向, 刘晓梅, 张亚军, 肖述琴. Petrel 建模中的几点认识[J]. 岩性油气藏, 2007, 19(2): 102 -107 .
[2] 张立秋. 南二区东部二类油层上返层系组合优化[J]. 岩性油气藏, 2007, 19(4): 116 -120 .
[3] 张娣,侯中健,王亚辉,王莹,王春联. 板桥—北大港地区沙河街组沙一段湖相碳酸盐岩沉积特征[J]. 岩性油气藏, 2008, 20(4): 92 -97 .
[4] 樊怀才,李晓平,窦天财,吴欣袁. 应力敏感效应的气井流量动态特征研究[J]. 岩性油气藏, 2010, 22(4): 130 -134 .
[5] 田淑芳,张鸿文. 应用生命周期旋回理论预测辽河油田石油探明储量增长趋势[J]. 岩性油气藏, 2010, 22(1): 98 -100 .
[6] 杨凯,郭肖. 裂缝性低渗透油藏三维两相黑油数值模拟研究[J]. 岩性油气藏, 2009, 21(3): 118 -121 .
[7] 翟中喜,秦伟军,郭金瑞. 油气充满度与储层通道渗流能力的定量关系———以泌阳凹陷双河油田岩性油藏为例[J]. 岩性油气藏, 2009, 21(4): 92 -95 .
[8] 戚明辉,陆正元,袁帅,李新华. 塔河油田12 区块油藏水体来源及出水特征分析[J]. 岩性油气藏, 2009, 21(4): 115 -119 .
[9] 李相博,陈启林,刘化清,完颜容,慕敬魁,廖建波,魏立花. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏, 2010, 22(3): 16 -21 .
[10] 刘云, 卢渊,伊向艺,张俊良,张锦良,王振喜. 天然气水合物预测模型及其影响因素[J]. 岩性油气藏, 2010, 22(3): 124 -127 .