岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 138–144.doi: 10.12108/yxyqc.20180617

• 石油工程 • 上一篇    下一篇

页岩气水平井试井模型及井间干扰特征

李继庆1, 刘曰武2,3, 黄灿1, 高大鹏2,3   

  1. 1. 中国石化江汉油田分公司 勘探开发研究院, 武汉 430223;
    2. 中国科学院 力学研究所, 北京 100190;
    3. 中国科学院大学, 北京 100049
  • 收稿日期:2018-06-05 修回日期:2018-09-16 出版日期:2018-11-16 发布日期:2018-09-14
  • 第一作者:李继庆(1971-),男,博士,高级工程师,主要从事页岩气开发方面的研究工作。地址:(430223)湖北省武汉市东湖高新区大学园路18号江汉油田研究院。Email:hcyeah@163.com
  • 通信作者: 刘曰武(1965-),男,博士,研究员,博士生导师,主要从事渗流力学和油气田开发方面的研究工作。Email:lywu@imech.ac.cn。
  • 基金资助:
    国家重大科技专项“涪陵页岩气开发示范工程”(编号:2016ZX05060)资助

Multi-stage fracturing horizontal well interference test model and its application

LI Jiqing1, LIU Yuewu2,3, HUANG Can1, GAO Dapeng2,3   

  1. 1. Research Institute of Exploration and Development, Sinopec Jianghan Oilfield Company, Wuhan 430223, China;
    2. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-06-05 Revised:2018-09-16 Online:2018-11-16 Published:2018-09-14

摘要: 页岩气田采用水平井井网大规模开发后,井间干扰造成的“压力下降快、气井过早废弃”的问题日益严重,亟须认识页岩气井的井间干扰特征。为此,先将水平井多段压裂改造后的页岩储层划分为压裂裂缝、SRV和未改造基质3个区域,然后根据各区域的孔缝特征和流动机制建立了多区域耦合的渗流模型,并采用PEBI网格和有限体积法进行数值求解。利用数值模拟,分析了连通渗透率和激动量等因素对于干扰试井测试结果及压力场分布特征的影响,并以焦页7井组中的JY7-1 HF井和JY7-2 HF井为例,采用干扰测试压力拟合法计算了两井之间连通段的平均渗透率为18.5 mD,说明两井之间连通性较好,建议后期生产过程中控制本井与邻井的产气量,同时避免邻井频繁更换工作制度。未来井网部署时应根据单井设计产能,对于与邻井水平段距离较近层段应控制压裂规模,并适时开展干扰试井测试。

关键词: 页岩气, 多段压裂水平井, 干扰试井, 数值模拟

Abstract: After the large-scale development of horizontal wells and well networks in shale gas fields, the problem of "fast pressure drop and premature gas well abandonment" caused by inter-well interference has become increasingly serious. It is urgent to understand the transient pressure of multi-stage fracturing horizontal wells under interference from adjacent wells and seepage characteristics. For this purpose, the shale reservoirs after multi-stage fracturing reformation of horizontal wells were firstly divided into three areas:fracturing fractures, SRVs and unmodified substrates. Then multi-zone coupled seepage model was established according to the characteristics of the pores in each region and the flow mechanism, and the model was numerically solved by using the PEBI grid and finite volume method. Through numerical simulation, the influences of factors such as connected permeability and agitation on the test results and pressure field distribution characteristics of interference wells were analyzed. Taking JY7-1 HF well and JY7-2 HF well in Jiaoyan 7 well group as examples, the average permeability of the connecting section between the two wells was 18.5 mD, which was calculated by interference test pressure fitting method, showing good connectivity. It is recommended that the gas production should be controlled in the later production process, while avoiding frequent replacement of working systems in adjacent wells. In the future, well pattern deployment should be based on the design productivity of a single well. The fracturing scale should be controlled for the interval close to the horizontal section of the adjacent wells, and the interference well test should be conducted in due course.

Key words: shale gas, multi-stage fractured horizontal well, interference well test, numerical simulation

中图分类号: 

  • TE373
[1] 张小龙, 张同伟, 李艳芳, 等.页岩气勘探和开发进展综述.岩性油气藏, 2013, 25(2):116-122. ZHANG X L, ZHANG T W, LI Y F, et al. Research advance in exploration and development of shale gas. Lithologic Reservoirs, 2013, 25(2):116-122.
[2] 黄籍中.四川盆地页岩气与煤层气勘探前景分析.岩性油气藏, 2009, 21(2):116-120. HUANG J Z. Exploration prospect of shale gas and coal-bed methane in Sichuan Basin. Lithologic Reservoirs, 2009, 21(2):116-120.
[3] 蒋廷学, 王海涛, 卞晓冰, 等.水平井体积压裂技术研究与应用.岩性油气藏, 2018, 30(3):1-11. JIANG T X, WANG H T, BIAN X B, et al. Volume fracturing technology for horizontal well and its application. Lithologic Reservoirs, 2018, 30(3):1-11.
[4] AJANI A, KELKAR M. Interference study in shale plays. SPE 151045, 2012.
[5] KIM T H, LEE J H, LEE K S. Integrated reservoir flow and geomechanical model to generate type curves for pressure transient responses of a hydraulically-fractured well in shale gas reservoirs. Journal of Petroleum Science and Engineering, 2016, 146:457-472.
[6] BELLO R O, WATTENBARGER R A. Multi-stage hydraulically fractured shale gas rate transient analysis. SPE 126754, 2010.
[7] OZKAN E, BROWN M L, RAGHAVAN R, et al. Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs. SPE Reservoir Evaluation & Engineering, 2011, 14(2):248-259.
[8] AL-RBEAWI S. Analysis of pressure behaviors and flow regimes of naturally and hydraulically fractured unconventional gas reservoirs using multi-linear flow regimes approach. Journal of Natural Gas Science and Engineering, 2017, 45:637-658.
[9] STALGOROVA E, MATTER L. Practical analytical model simulate production of horizontal wells with Branch Fractures. SPE 162515, 2012.
[10] ZHANG L H, GAO J, HU S Y, et al. Five-region flow model for MFHWs in dual porous shale gas reservoirs. Journal of Natural Gas Science and Engineering, 2016, 33:1316-1323.
[11] ZENG J, WANG X Z, GUO J C, et al. Composite linear flow model for multi-fractured horizontal wells in heterogeneous shale reservoir. Journal of Natural Gas Science and Engineering, 2017, 38:527-548.
[12] WANG J L, JIA A L, WEI Y S, et al. Approximate semi-analytical modeling of transient behavior of horizontal well intercepted by multiple pressure-dependent conductivity fractures in pressuresensitive reservoir. Journal of Petroleum Science and Engineering, 2017, 153:157-177.
[13] 张旭, 蒋廷学, 贾长贵, 等.页岩气储层水力压裂物理模拟试验研究. 石油钻探技术, 2013, 41(2):69-74. ZHANG X, JIANG T X, JIA C G, et al. Physical simulation of hydraulic fracturing of shale gas reservoir. Petroleum Drilling Techniques, 2013, 41(2):69-74.
[14] 陈居凯, 朱炎铭, 崔兆帮, 等.川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏, 2018, 30(1):55-62. CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):55-62.
[15] 张烈辉, 单保超, 赵玉龙, 等.页岩气藏表观渗透率和综合渗流模型建立. 岩性油气藏, 2017, 29(6):108-118. ZHANG L H, SHAN B C, ZHAO Y L, et al. Establishment of apparent permeability model and seepage flow model for shale reservoir. Lithologic Reservoirs, 2017, 29(6):108-118.
[16] 余江浩, 王登, 王亿, 等.湖北西部上二叠统大隆组页岩气资源潜力评价.岩性油气藏, 2018, 30(4):84-90. YU J H, WANG D, WANG Y, et al. Evaluation of shale gas resource potential of Late Permian Dalong Formation in western Hubei province. Lithologic Reservoirs, 2018, 30(4):84-90.
[17] 樊冬艳, 姚军, 孙海, 等.考虑多重运移机制耦合页岩气藏压裂水平井数值模拟.力学学报, 2015, 47(6):906-915. FAN D Y, YAO J, SUN H, et al. Numerical simulation of multifractured horizontal well in shale gas reservoir considering multiple gas transport mechanisms. Acta Mechanica Sinica, 2015, 47(6):906-915.
[18] CIVAN F, RAI S C, SONDERGELD H C. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms. Transport in Porous Media, 2010, 86(3):925-944.
[19] YE Z H, CHEN D, PAN Z J. A unified method to evaluate shale gas flow behaviours in different flow regions. Journal of Natural Gas Science & Engineering, 2015, 26(C):205-215.
[20] 车世琦.测井资料用于页岩岩相划分及识别——以涪陵气田五峰组-龙马溪组为例.岩性油气藏, 2018, 30(1):121-132. CHE S Q. Shale lithofacies identification and classification by using logging data:a case of Wufeng-Longmaxi Formation in Fuling Gas Field, Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):121-132.
[1] 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188.
[2] 闫建平, 来思俣, 郭伟, 石学文, 廖茂杰, 唐洪明, 胡钦红, 黄毅. 页岩气井地质工程套管变形类型及影响因素研究进展[J]. 岩性油气藏, 2024, 36(5): 1-14.
[3] 杨学锋, 赵圣贤, 刘勇, 刘绍军, 夏自强, 徐飞, 范存辉, 李雨桐. 四川盆地宁西地区奥陶系五峰组—志留系龙马溪组页岩气富集主控因素[J]. 岩性油气藏, 2024, 36(5): 99-110.
[4] 包汉勇, 赵帅, 张莉, 刘皓天. 川东红星地区中上二叠统页岩气勘探成果及方向展望[J]. 岩性油气藏, 2024, 36(4): 12-24.
[5] 申有义, 王凯峰, 唐书恒, 张松航, 郗兆栋, 杨晓东. 沁水盆地榆社—武乡区块二叠系煤系页岩储层地质建模及“甜点”预测[J]. 岩性油气藏, 2024, 36(4): 98-108.
[6] 段逸飞, 赵卫卫, 杨天祥, 李富康, 李慧, 王嘉楠, 刘钰晨. 鄂尔多斯盆地延安地区二叠系山西组页岩气源储特征及聚集规律[J]. 岩性油气藏, 2024, 36(3): 72-83.
[7] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[8] 刘仁静, 陆文明. 断块油藏注采耦合提高采收率机理及矿场实践[J]. 岩性油气藏, 2024, 36(3): 180-188.
[9] 包汉勇, 刘超, 甘玉青, 薛萌, 刘世强, 曾联波, 马诗杰, 罗良. 四川盆地涪陵南地区奥陶系五峰组—志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏, 2024, 36(1): 14-22.
[10] 杨博伟, 石万忠, 张晓明, 徐笑丰, 刘俞佐, 白卢恒, 杨洋, 陈相霖. 黔南地区下石炭统打屋坝组页岩气储层孔隙结构特征及含气性评价[J]. 岩性油气藏, 2024, 36(1): 45-58.
[11] 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
[12] 李丰丰, 倪小威, 徐思慧, 魏新路, 刘迪仁. 斜井各向异性地层随钻侧向测井响应规律及快速校正方法[J]. 岩性油气藏, 2023, 35(3): 161-168.
[13] 杨跃明, 张少敏, 金涛, 明盈, 郭蕊莹, 王兴志, 韩璐媛. 川南地区二叠系龙潭组页岩储层特征及勘探潜力[J]. 岩性油气藏, 2023, 35(1): 1-11.
[14] 吕栋梁, 杨健, 林立明, 张恺漓, 陈燕虎. 砂岩储层油水相对渗透率曲线表征模型及其在数值模拟中的应用[J]. 岩性油气藏, 2023, 35(1): 145-159.
[15] 闫建平, 罗静超, 石学文, 钟光海, 郑马嘉, 黄毅, 唐洪明, 胡钦红. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . 2022年 34卷 2 期 封面[J]. 岩性油气藏, 2022, 34(2): 0 .
[2] 李在光, 李琳. 以井数据为基础的AutoCAD 自动编绘图方法[J]. 岩性油气藏, 2007, 19(2): 84 -89 .
[3] 程玉红, 郭彦如, 郑希民, 房乃珍, 马玉虎. 井震多因素综合确定的解释方法与应用效果[J]. 岩性油气藏, 2007, 19(2): 97 -101 .
[4] 刘俊田,靳振家,李在光,覃新平,郭 林,王 波,刘玉香. 小草湖地区岩性油气藏主控因素分析及油气勘探方向[J]. 岩性油气藏, 2007, 19(3): 44 -47 .
[5] 商昌亮,付守献. 黄土塬山地三维地震勘探应用实例[J]. 岩性油气藏, 2007, 19(3): 106 -110 .
[6] 王昌勇, 郑荣才, 王建国, 曹少芳, 肖明国. 准噶尔盆地西北缘八区下侏罗统八道湾组沉积特征及演化[J]. 岩性油气藏, 2008, 20(2): 37 -42 .
[7] 王克, 刘显阳, 赵卫卫, 宋江海, 时振峰, 向惠. 济阳坳陷阳信洼陷古近纪震积岩特征及其地质意义[J]. 岩性油气藏, 2008, 20(2): 54 -59 .
[8] 孙洪斌, 张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏, 2008, 20(2): 60 -65 .
[9] 李传亮. 地层抬升会导致异常高压吗?[J]. 岩性油气藏, 2008, 20(2): 124 -126 .
[10] 魏钦廉,郑荣才,肖玲,马国富,窦世杰,田宝忠. 阿尔及利亚438b 区块三叠系Serie Inferiere 段储层平面非均质性研究[J]. 岩性油气藏, 2009, 21(2): 24 -28 .