岩性油气藏 ›› 2018, Vol. 30 ›› Issue (6): 138–144.doi: 10.12108/yxyqc.20180617

• 石油工程 • 上一篇    下一篇

页岩气水平井试井模型及井间干扰特征

李继庆1, 刘曰武2,3, 黄灿1, 高大鹏2,3   

  1. 1. 中国石化江汉油田分公司 勘探开发研究院, 武汉 430223;
    2. 中国科学院 力学研究所, 北京 100190;
    3. 中国科学院大学, 北京 100049
  • 收稿日期:2018-06-05 修回日期:2018-09-16 出版日期:2018-11-16 发布日期:2018-09-14
  • 通讯作者: 刘曰武(1965-),男,博士,研究员,博士生导师,主要从事渗流力学和油气田开发方面的研究工作。Email:lywu@imech.ac.cn。 E-mail:lywu@imech.ac.cn
  • 作者简介:李继庆(1971-),男,博士,高级工程师,主要从事页岩气开发方面的研究工作。地址:(430223)湖北省武汉市东湖高新区大学园路18号江汉油田研究院。Email:hcyeah@163.com
  • 基金资助:
    国家重大科技专项“涪陵页岩气开发示范工程”(编号:2016ZX05060)资助

Multi-stage fracturing horizontal well interference test model and its application

LI Jiqing1, LIU Yuewu2,3, HUANG Can1, GAO Dapeng2,3   

  1. 1. Research Institute of Exploration and Development, Sinopec Jianghan Oilfield Company, Wuhan 430223, China;
    2. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-06-05 Revised:2018-09-16 Online:2018-11-16 Published:2018-09-14

摘要: 页岩气田采用水平井井网大规模开发后,井间干扰造成的“压力下降快、气井过早废弃”的问题日益严重,亟须认识页岩气井的井间干扰特征。为此,先将水平井多段压裂改造后的页岩储层划分为压裂裂缝、SRV和未改造基质3个区域,然后根据各区域的孔缝特征和流动机制建立了多区域耦合的渗流模型,并采用PEBI网格和有限体积法进行数值求解。利用数值模拟,分析了连通渗透率和激动量等因素对于干扰试井测试结果及压力场分布特征的影响,并以焦页7井组中的JY7-1 HF井和JY7-2 HF井为例,采用干扰测试压力拟合法计算了两井之间连通段的平均渗透率为18.5 mD,说明两井之间连通性较好,建议后期生产过程中控制本井与邻井的产气量,同时避免邻井频繁更换工作制度。未来井网部署时应根据单井设计产能,对于与邻井水平段距离较近层段应控制压裂规模,并适时开展干扰试井测试。

关键词: 页岩气, 多段压裂水平井, 干扰试井, 数值模拟

Abstract: After the large-scale development of horizontal wells and well networks in shale gas fields, the problem of "fast pressure drop and premature gas well abandonment" caused by inter-well interference has become increasingly serious. It is urgent to understand the transient pressure of multi-stage fracturing horizontal wells under interference from adjacent wells and seepage characteristics. For this purpose, the shale reservoirs after multi-stage fracturing reformation of horizontal wells were firstly divided into three areas:fracturing fractures, SRVs and unmodified substrates. Then multi-zone coupled seepage model was established according to the characteristics of the pores in each region and the flow mechanism, and the model was numerically solved by using the PEBI grid and finite volume method. Through numerical simulation, the influences of factors such as connected permeability and agitation on the test results and pressure field distribution characteristics of interference wells were analyzed. Taking JY7-1 HF well and JY7-2 HF well in Jiaoyan 7 well group as examples, the average permeability of the connecting section between the two wells was 18.5 mD, which was calculated by interference test pressure fitting method, showing good connectivity. It is recommended that the gas production should be controlled in the later production process, while avoiding frequent replacement of working systems in adjacent wells. In the future, well pattern deployment should be based on the design productivity of a single well. The fracturing scale should be controlled for the interval close to the horizontal section of the adjacent wells, and the interference well test should be conducted in due course.

Key words: shale gas, multi-stage fractured horizontal well, interference well test, numerical simulation

中图分类号: 

  • TE373
[1] 张小龙, 张同伟, 李艳芳, 等.页岩气勘探和开发进展综述.岩性油气藏, 2013, 25(2):116-122. ZHANG X L, ZHANG T W, LI Y F, et al. Research advance in exploration and development of shale gas. Lithologic Reservoirs, 2013, 25(2):116-122.
[2] 黄籍中.四川盆地页岩气与煤层气勘探前景分析.岩性油气藏, 2009, 21(2):116-120. HUANG J Z. Exploration prospect of shale gas and coal-bed methane in Sichuan Basin. Lithologic Reservoirs, 2009, 21(2):116-120.
[3] 蒋廷学, 王海涛, 卞晓冰, 等.水平井体积压裂技术研究与应用.岩性油气藏, 2018, 30(3):1-11. JIANG T X, WANG H T, BIAN X B, et al. Volume fracturing technology for horizontal well and its application. Lithologic Reservoirs, 2018, 30(3):1-11.
[4] AJANI A, KELKAR M. Interference study in shale plays. SPE 151045, 2012.
[5] KIM T H, LEE J H, LEE K S. Integrated reservoir flow and geomechanical model to generate type curves for pressure transient responses of a hydraulically-fractured well in shale gas reservoirs. Journal of Petroleum Science and Engineering, 2016, 146:457-472.
[6] BELLO R O, WATTENBARGER R A. Multi-stage hydraulically fractured shale gas rate transient analysis. SPE 126754, 2010.
[7] OZKAN E, BROWN M L, RAGHAVAN R, et al. Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs. SPE Reservoir Evaluation & Engineering, 2011, 14(2):248-259.
[8] AL-RBEAWI S. Analysis of pressure behaviors and flow regimes of naturally and hydraulically fractured unconventional gas reservoirs using multi-linear flow regimes approach. Journal of Natural Gas Science and Engineering, 2017, 45:637-658.
[9] STALGOROVA E, MATTER L. Practical analytical model simulate production of horizontal wells with Branch Fractures. SPE 162515, 2012.
[10] ZHANG L H, GAO J, HU S Y, et al. Five-region flow model for MFHWs in dual porous shale gas reservoirs. Journal of Natural Gas Science and Engineering, 2016, 33:1316-1323.
[11] ZENG J, WANG X Z, GUO J C, et al. Composite linear flow model for multi-fractured horizontal wells in heterogeneous shale reservoir. Journal of Natural Gas Science and Engineering, 2017, 38:527-548.
[12] WANG J L, JIA A L, WEI Y S, et al. Approximate semi-analytical modeling of transient behavior of horizontal well intercepted by multiple pressure-dependent conductivity fractures in pressuresensitive reservoir. Journal of Petroleum Science and Engineering, 2017, 153:157-177.
[13] 张旭, 蒋廷学, 贾长贵, 等.页岩气储层水力压裂物理模拟试验研究. 石油钻探技术, 2013, 41(2):69-74. ZHANG X, JIANG T X, JIA C G, et al. Physical simulation of hydraulic fracturing of shale gas reservoir. Petroleum Drilling Techniques, 2013, 41(2):69-74.
[14] 陈居凯, 朱炎铭, 崔兆帮, 等.川南龙马溪组页岩孔隙结构综合表征及其分形特征.岩性油气藏, 2018, 30(1):55-62. CHEN J K, ZHU Y M, CUI Z B, et al. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):55-62.
[15] 张烈辉, 单保超, 赵玉龙, 等.页岩气藏表观渗透率和综合渗流模型建立. 岩性油气藏, 2017, 29(6):108-118. ZHANG L H, SHAN B C, ZHAO Y L, et al. Establishment of apparent permeability model and seepage flow model for shale reservoir. Lithologic Reservoirs, 2017, 29(6):108-118.
[16] 余江浩, 王登, 王亿, 等.湖北西部上二叠统大隆组页岩气资源潜力评价.岩性油气藏, 2018, 30(4):84-90. YU J H, WANG D, WANG Y, et al. Evaluation of shale gas resource potential of Late Permian Dalong Formation in western Hubei province. Lithologic Reservoirs, 2018, 30(4):84-90.
[17] 樊冬艳, 姚军, 孙海, 等.考虑多重运移机制耦合页岩气藏压裂水平井数值模拟.力学学报, 2015, 47(6):906-915. FAN D Y, YAO J, SUN H, et al. Numerical simulation of multifractured horizontal well in shale gas reservoir considering multiple gas transport mechanisms. Acta Mechanica Sinica, 2015, 47(6):906-915.
[18] CIVAN F, RAI S C, SONDERGELD H C. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms. Transport in Porous Media, 2010, 86(3):925-944.
[19] YE Z H, CHEN D, PAN Z J. A unified method to evaluate shale gas flow behaviours in different flow regions. Journal of Natural Gas Science & Engineering, 2015, 26(C):205-215.
[20] 车世琦.测井资料用于页岩岩相划分及识别——以涪陵气田五峰组-龙马溪组为例.岩性油气藏, 2018, 30(1):121-132. CHE S Q. Shale lithofacies identification and classification by using logging data:a case of Wufeng-Longmaxi Formation in Fuling Gas Field, Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):121-132.
[1] 尹兴平, 蒋裕强, 付永红, 张雪梅, 雷治安, 陈超, 张海杰. 渝西地区五峰组—龙马溪组龙一1亚段页岩岩相及储层特征[J]. 岩性油气藏, 2021, 33(4): 41-51.
[2] 向雪冰, 司马立强, 王亮, 李军, 郭宇豪, 张浩. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
[3] 丛平, 闫建平, 井翠, 张家浩, 唐洪明, 王军, 耿斌, 王敏, 晁静. 页岩气储层可压裂性级别测井评价及展布特征——以川南X地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(3): 177-188.
[4] 许飞. 考虑化学渗透压作用下页岩气储层压裂液的自发渗吸特征[J]. 岩性油气藏, 2021, 33(3): 145-152.
[5] 朱苏阳, 李冬梅, 李传亮, 李会会, 刘雄志. 再谈岩石本体变形的孔隙度不变原则[J]. 岩性油气藏, 2021, 33(2): 180-188.
[6] 刘明明, 王全, 马收, 田中政, 丛颜. 基于混合粒子群算法的煤层气井位优化方法[J]. 岩性油气藏, 2020, 32(6): 164-171.
[7] 钟红利, 吴雨风, 闪晨晨. 北大巴山地区鲁家坪组页岩地球化学特征及勘探意义[J]. 岩性油气藏, 2020, 32(5): 13-22.
[8] 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132.
[9] 符东宇, 李勇明, 赵金洲, 江有适, 陈曦宇, 许文俊. 基于REV尺度格子Boltzmann方法的页岩气藏渗流规律[J]. 岩性油气藏, 2020, 32(5): 151-160.
[10] 关华, 郭平, 赵春兰, 谭保国, 徐冬梅. 渤海湾盆地永安油田永66区块氮气驱油机理[J]. 岩性油气藏, 2020, 32(2): 149-160.
[11] 王登, 余江浩, 赵雪松, 陈威, 黄佳琪, 徐聪. 四川盆地石柱地区自流井组页岩气成藏条件与勘探前景[J]. 岩性油气藏, 2020, 32(1): 27-35.
[12] 周瑞, 苏玉亮, 马兵, 张琪, 王文东. 随机分形体积压裂水平井CO2吞吐模拟[J]. 岩性油气藏, 2020, 32(1): 161-168.
[13] 卞晓冰, 侯磊, 蒋廷学, 高东伟, 张驰. 深层页岩裂缝形态影响因素[J]. 岩性油气藏, 2019, 31(6): 161-168.
[14] 龙明, 刘英宪, 陈晓祺, 王美楠, 于登飞. 基于曲流河储层构型的注采结构优化调整[J]. 岩性油气藏, 2019, 31(6): 145-154.
[15] 王跃鹏, 刘向君, 梁利喜. 鄂尔多斯盆地延长组张家滩陆相页岩各向异性及能量演化特征[J]. 岩性油气藏, 2019, 31(5): 149-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄思静,黄培培,王庆东,刘昊年,吴 萌,邹明亮. 胶结作用在深埋藏砂岩孔隙保存中的意义[J]. 岩性油气藏, 2007, 19(3): 7 -13 .
[2] 刘震, 陈艳鹏, 赵阳,, 郝奇, 许晓明, 常迈. 陆相断陷盆地油气藏形成控制因素及分布规律概述[J]. 岩性油气藏, 2007, 19(2): 121 -127 .
[3] 冯心远,王宇超,胡自多,李 斐,邵喜春. 基于叠后地震记录求取整形算子的叠前资料拼接技术[J]. 岩性油气藏, 2007, 19(3): 93 -96 .
[4] 丁超,郭兰,闫继福. 子长油田安定地区延长组长6 油层成藏条件分析[J]. 岩性油气藏, 2009, 21(1): 46 -50 .
[5] 李彦山,张占松,张超谟,陈鹏. 应用压汞资料对长庆地区长6 段储层进行分类研究[J]. 岩性油气藏, 2009, 21(2): 91 -93 .
[6] 罗 鹏,李国蓉,施泽进,周大志,汤鸿伟,张德明. 川东南地区茅口组层序地层及沉积相浅析[J]. 岩性油气藏, 2010, 22(2): 74 -78 .
[7] 潘建国,卫平生,张虎权,谭开俊. 地震储层学与相关学科的比较[J]. 岩性油气藏, 2010, 22(3): 1 -4 .
[8] 左国平,屠小龙,夏九峰. 苏北探区火山岩油气藏类型研究[J]. 岩性油气藏, 2012, 24(2): 37 -41 .
[9] 邢二涛,张云锋. 水平井开发技术在贝中区N1 段应用研究[J]. 岩性油气藏, 2010, 22(Z1): 93 -95 .
[10] 王飞宇. 提高热采水平井动用程度的方法与应用[J]. 岩性油气藏, 2010, 22(Z1): 100 -103 .